Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

THE EROMANGA BASIN

H.R.B. Wecker

The APPEA Journal 29(1) 379 - 397
Published: 1989

Abstract

The Eromanga Basin, encompassing an area of approximately 1 million km2 in Central Australia, is a broad intracratonic downwarp containing up to 3000 m of Middle Triassic to Late Cretaceous sediments.

Syndepositional tectonic activity within the basin was minimal and the main depocentres largely coincide with those of the preceding Permo- Triassic basins. Several Tertiary structuring phases, particularly in the Early Tertiary, have resulted in uplift and erosion of the Eromanga Basin section along its eastern margin, and the development of broad, northwesterly- to northeasterly- trending anticlines within the basin. In some instances, high angle faults are associated with these features. This structural deformation occurred in an extensional regime and was strongly influenced by the underlying Palaeozoic structural grain.

The Eromanga Basin section is composed of a basal, dominantly non- marine, fluvial and lacustrine sequence overlain by shallow marine deposits which are in turn overlain by another fluvial, lacustrine and coal- swamp sequence. The basal sequence is the principal zone of interest to petroleum exploration. It contains the main reservoirs and potential source rocks and hosts all commercial hydrocarbon accumulations found to date. While the bulk of discovered reserves are in structural traps, a significant stratigraphic influence has been noted in a number of commercially significant hydrocarbon accumulations.

All major discoveries have been in the central Eromanga Basin region overlying and adjacent to the hydrocarbon- productive, Permo- Triassic Cooper Basin. The mature Permian section is believed to have contributed a significant proportion of the Eromanga- reservoired hydrocarbons. Accordingly, structural timing and migration pathways within the Permian and Middle Triassic- Jurassic sections are important factors for exploration in the central Eromanga Basin region. Elsewhere, in less thermally- mature areas, hydrocarbon generation post- dates Tertiary structuring and thus exploration success will relate primarily to source- rock quality, maturity and drainage factors.

Although exploration in the basin has proceeded spasmodically for over 50 years, it has only been in the last decade that significant exploration activity has occurred. Over this recent period, some 450 exploration wells and 140 000 km of seismic acquisition have been completed in the pursuit of Eromanga Basin oil accumulations. This has resulted in the discovery of 227 oil and gas pools totalling an original in- place proved and probable (OOIP) resource of 360 MMSTB oil and 140 BCF gas.

Though pool sizes are generally small, up to 5 MMSTB OOIP, the attractiveness of Eromanga exploration lies in the propensity for stacked pools at relatively shallow depths, moderate to high reservoir productivity, and established infrastructure with pipelines to coastal centres. Coupled with improved exploration techniques and increasing knowledge of the basinal geology, these attributes will undoubtedly ensure the Eromanga Basin continues to be a prime onshore area for future petroleum exploration in Australia.

https://doi.org/10.1071/AJ88032

© CSIRO 1989

Committee on Publication Ethics


Export Citation Cited By (1)

View Dimensions