Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH FRONT

Inhibitions of FASN suppress triglyceride synthesis via the control of malonyl-CoA in goat mammary epithelial cells

J. Luo A B , J. J. Zhu A , Y. T. Sun A , H. B. Shi A and J. Li A
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.

B Corresponding author. Email: luojun@nwsuaf.edu.cn

Animal Production Science 57(8) 1624-1630 https://doi.org/10.1071/AN15708
Submitted: 7 October 2015  Accepted: 31 March 2016   Published: 14 June 2016

Abstract

Fatty acid synthase (FASN) is the key enzyme for de novo fatty acid synthesis from acetyl-CoA and malonyl-CoA. All the steps involved in fatty acid synthesis by FASN have been clearly defined in monogastrics and ruminants. However, there are no data on the mechanism of how FASN affects triglyceride synthesis. Inhibition of FASN in goat mammary epithelial cells by C75, a synthetic inhibitor of FASN activity, and shRNA markedly suppressed the accumulation of triglyceride in goat mammary epithelial cells. Meanwhile, C75 treatment significantly reduced the relative content of monounsaturated fatty acids (C16:1 and C18:1). Corresponding to the suppression of lipid accumulation, both of C75 and shRNA also decreased the mRNA expression of GPAM, AGPAT6 and DGAT2, all of which are related to triglyceride synthesis. The fact that treatment of malonyl-CoA decreased the expression of these genes is consistent with the results of shRNA treatment. Furthermore, the supplement of malonyl-CoA enhanced the suppression on GPAM, AGPAT6, LPIN1, DGAT1 and DGAT2. The results underscore the role of malonyl-CoA in inhibition of FASN in regulating triglyceride synthesis in goat mammary epithelial cells.

Additional keywords: fatty acid, gene regulation, goats.


References

Asturias FJ, Chadick JZ, Cheung IK, Stark H, Witkowski A, Joshi AK, Smith S (2005) Structure and molecular organization of mammalian fatty acid synthase. Nature Structural & Molecular Biology 12, 225–232.
Structure and molecular organization of mammalian fatty acid synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslClt7o%3D&md5=98f8cf37b82631081b585a0bc5c0f04eCAS |

Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. Journal of Dairy Science 89, 1235–1243.
Major advances associated with the biosynthesis of milk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1SjsLg%3D&md5=a350a36e99c1c4a7b76c5e092c74ebafCAS | 16537956PubMed |

Bernard L, Rouel J, Leroux C, Ferlay A, Faulconnier Y, Legrand P, Chilliard Y (2005) Mammary lipid metabolism and milk fatty acid secretion in Alpine goats fed vegetable lipids. Journal of Dairy Science 88, 1478–1489.
Mammary lipid metabolism and milk fatty acid secretion in Alpine goats fed vegetable lipids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVykurg%3D&md5=98394c1d4a6a89c326f7905e4e0e754bCAS | 15778317PubMed |

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911–917.
A rapid method of total lipid extraction and purification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVSgt70%3D&md5=c1d746a6458016be924540a5fe831f9aCAS | 13671378PubMed |

Bonnet M, Bernard L, Bes S, Leroux C (2013) Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal 7, 1344–1353.
Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOktrjP&md5=0ebb05c02479416950a0069933d67512CAS | 23552195PubMed |

Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, Semenkovich CF (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138, 476–488.
Identification of a physiologically relevant endogenous ligand for PPARalpha in liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVChs7nI&md5=4ec76f35db082c1f92054967c607540eCAS | 19646743PubMed |

Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL (2011) Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism 22, 211–217.
Determinants of adipophilin function in milk lipid formation and secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslOgtLg%3D&md5=b8b26a176edc3430134c6568dd8f23d8CAS | 21592818PubMed |

Currie E, Schulze A, Zechner R, Walther TC, Farese RV (2013) Cellular fatty acid metabolism and cancer. Cell Metabolism 18, 153–161.
Cellular fatty acid metabolism and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVyrsLY%3D&md5=39b58fe56e6eeaba0a7d1cf9ef9e7006CAS | 23791484PubMed |

De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV (2003) RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Research 63, 3799–3804.

Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, Demichelis F, Keith R, Solomon KR, Loda M, Rubin MA, Lisanti MP, Freeman MR (2008) Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle (Georgetown, Tex.) 7, 2257–2267.
Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase.Crossref | GoogleScholarGoogle Scholar |

Dils RR (1986) Comparative aspects of milk fat synthesis. Journal of Dairy Science 69, 904–910.
Comparative aspects of milk fat synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvVeks7g%3D&md5=14011808d067443092c70d79f2e11878CAS | 3711414PubMed |

Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226, 497–509.

Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. The Journal of Clinical Investigation 122, 1958–1959.
Malonyl-CoA: the regulator of fatty acid synthesis and oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFartbY%3D&md5=a2a8fb52cabfdfdb884374e23ffc44bdCAS | 22833869PubMed |

Georgiadi A, Kersten S (2012) Mechanisms of gene regulation by fatty acids. Advances in Nutrition 3, 127–134.
Mechanisms of gene regulation by fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVGrs78%3D&md5=43bdbefe7229d1c5baba43b3fe9afb28CAS | 22516720PubMed |

Hansen HO, Grunnet I, Knudsen J (1984) Triacylglycerol synthesis in goat mammary gland. Factors influencing the esterification of fatty acids synthesized de novo. The Biochemical Journal 220, 521–527.
Triacylglycerol synthesis in goat mammary gland. Factors influencing the esterification of fatty acids synthesized de novo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktF2hs74%3D&md5=8292c5f0211d5a26d18e90e485337c14CAS | 6743284PubMed |

Kadegowda AK, Bionaz M, Piperova LS, Erdman RA, Loor JJ (2009a) Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science 92, 4276–4289.
Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKqsbfL&md5=3c531b8f07dc73c5f85bf106d4c87a3dCAS | 19700688PubMed |

Kadegowda AK, Bionaz M, Thering B, Piperova LS, Erdman RA, Loor JJ (2009b) Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. Journal of Dairy Science 92, 2007–2019.
Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFynu7c%3D&md5=33c4a202bed989d9a3b67e142cb75509CAS | 19389958PubMed |

Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K, Ose R, Mori M, Kubota N, Kadowaki T, Oike Y, Koga H, Febbraio M, Iwanaga T, Miyazaki T (2010) Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metabolism 11, 479–492.
Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyitrg%3D&md5=c006a6334963467d18c97e67e53ebc07CAS | 20519120PubMed |

Lin X-z, Luo J, Zhang L-p, Wang W, Shi H-b, Zhu J-j (2013) miR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene 521, 15–23.
miR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslSqsrw%3D&md5=04d69614d31d988014f2a0a75744fdd7CAS | 23537996PubMed |

Ma L (2012) Regulatory factors of milk fat synthesis in dairy cows. Thesis PhD thesis, Virginia Polytechnic Institute and State University, Virginia, USA.

McGarry JD, Mannaerts GP, Foster DW (1977) A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. The Journal of Clinical Investigation 60, 265–270.
A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltFGhtLY%3D&md5=b9c771c1ceab0a4e51862324cfe9c43eCAS | 874089PubMed |

Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM (2009) Fatty acid synthase: association with insulin resistance, Type 2 diabetes, and cancer. Clinical Chemistry 55, 425–438.
Fatty acid synthase: association with insulin resistance, Type 2 diabetes, and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFaqsbs%3D&md5=f49fa2d866bbc9539486b9cc08979216CAS | 19181734PubMed |

Peterson DG, Matitashvili EA, Bauman DE (2004) The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. The Journal of Nutrition 134, 2523–2527.

Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annual Review of Nutrition 28, 253–272.
Malonyl-CoA, a key signaling molecule in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2isLzK&md5=bbf2ac6d32664152637aa360b3156cb8CAS | 18598135PubMed |

Semenkovich CF (1997) Regulation of fatty acid synthase (FAS). Progress in Lipid Research 36, 43–53.
Regulation of fatty acid synthase (FAS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVeruro%3D&md5=1a97e6ba3153b2a94c6d628d7c52b11cCAS | 9373620PubMed |

Shi H, Luo J, Zhu J, Li J, Sun Y, Lin X, Zhang L, Yao D, Shi H (2013) PPARG regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Research 2013, 310948
PPARG regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats.Crossref | GoogleScholarGoogle Scholar | 23710163PubMed |

Wang W, Luo J, Zhao W, Li J, Zhang X, Wang L (2010) Screening of shRNA sequence target Xinong Saanen goat FAS gene and the construction of recombinant adenovirus vector. Acta Agriculturae Boreali-occidentalis Sinica 19, 6–12.

Wang W, Luo J, Zhong Y, Lin X-Z, Shi H-B, Zhu J-J, Li J, Sun Y-T, Zhao W-S (2012) Goat liver X receptor α, molecular cloning, functional characterization and regulating fatty acid synthesis in epithelial cells of goat mammary glands. Gene 505, 114–120.
Goat liver X receptor α, molecular cloning, functional characterization and regulating fatty acid synthesis in epithelial cells of goat mammary glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1emu78%3D&md5=5f6dc019df1f521ea0639f585440f951CAS | 22634102PubMed |

Wei X, Schneider JG, Shenouda SM, Lee A, Towler DA, Chakravarthy MV, Vita JA, Semenkovich CF (2011) De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. The Journal of Biological Chemistry 286, 2933–2945.
De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVaquw%3D%3D&md5=7ddff3b84d771dc89eeae7dc0b0ed3a9CAS | 21098489PubMed |

Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2008a) Regulation of hormone-sensitive lipase expression by saturated fatty acids and hormones in bovine mammary epithelial cells. Biochemical and Biophysical Research Communications 376, 36–39.
Regulation of hormone-sensitive lipase expression by saturated fatty acids and hormones in bovine mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyqtL7F&md5=2b53379e3579cdaf3b42303d6b1c1948CAS | 18755148PubMed |

Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2008b) Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells. Biochemical and Biophysical Research Communications 367, 729–735.
Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFylsb4%3D&md5=67d7d271d091086250f77e8eeb3d61d9CAS | 18191634PubMed |

Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2009) Short-chain fatty acid signaling pathways in bovine mammary epithelial cells. Regulatory Peptides 153, 30–36.
Short-chain fatty acid signaling pathways in bovine mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVGjsrw%3D&md5=37b61c56a42054dc13a02adba98f6f02CAS | 19101595PubMed |

Zhang Y, Zhang XD, Liu X, Li YS, Ding JP, Zhang XR, Zhang YH (2013) Reference gene screening for analyzing gene expression across goat tissue. Asian–Australasian Journal of Animal Sciences 26, 1665–1671.
Reference gene screening for analyzing gene expression across goat tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXit1SjtQ%3D%3D&md5=17507082f28014a76d2ba1b3aabd6e80CAS | 25049756PubMed |

Zhu JJ, Luo J, Wang W, Yu K, Wang HB, Shi HB, Sun YT, Lin XZ, Li J (2014) Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland. Animal 8, 1469–1478.
Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOjsrbF&md5=aee8eb45ccf9ea3360df43912e0bf7e3CAS | 24909980PubMed |

Zhu J, Luo J, Sun Y, Shi H, Li J, Wu M, Yu K, Haile AB, Loor JJ (2015) Short communication: effect of FASN inhibition on triglyceride accumulation and impact on lipid metabolism genes in goat mammary epithelial cells. Journal of Dairy Science 98, 3485–3491.
Short communication: effect of FASN inhibition on triglyceride accumulation and impact on lipid metabolism genes in goat mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFGhsLc%3D&md5=157338b001adad8c2dafbde82b51b223CAS | 25726120PubMed |