Skip to main content
Log in

Beyond chemical dependency for managing plant-parasitic nematodes: examples from the banana, pineapple and vegetable industries of tropical and subtropical Australia

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Plant-parasitic nematodes are important pests of horticultural crops grown in tropical and subtropical regions of Australia. Burrowing nematode (Radopholus similis) is a major impediment to banana production and root-knot nematodes (predominantly Meloidogyne javanica and M. incognita) cause problems on pineapple and a range of annual vegetables, including tomato, capsicum, zucchini, watermelon, rockmelon, potato and sweet potato. In the early 1990s, nematode control in these industries was largely achieved with chemicals, with methyl bromide widely used on some subtropical vegetable crops, ethylene dibromide applied routinely to pineapples and non-volatile nematicides such as fenamiphos applied up to four times a year in banana plantations. This paper discusses the research and extension work done over the last 15 years to introduce an integrated pest management approach to nematode control in tropical and subtropical horticulture. It then discusses various components of current integrated pest management programs, including crop rotation, nematode monitoring, clean planting material, organic amendments, farming systems to enhance biological suppression of nematodes and judicious use of nematicides. Finally, options for improving current management practices are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology 74, 35–47. doi: 10.1016/S0960-8524 (99)00154-6

    Article  CAS  Google Scholar 

  • Anon. (1998) ‘National methyl bromide response strategy.’ (Environment Australia: Canberra) 75 pp.

  • Anon. (2003) Reef Water Quality Protection Plan, Queensland Department of Premier and cabinet, Brisbane, Queensland, 44 pp. Available at http:// www.reefplan.qld.gov.au [Verified 28 February 2008]

  • Blake CD (1961) Root rot of bananas caused by Radopholus similis (Cobb) and its control in New South Wales. Nematologica 6, 295–310.

    Article  Google Scholar 

  • Blake CD (1963) Root and corm diseases of bananas. Agricultural Gazette of New South Wales 74, 526–533.

    Google Scholar 

  • Blake CD (1969) Nematode parasites of banana and their control. In ‘Nematodes of tropical crops’. (Ed. JE Peachey) pp. 108–132. (Commonwealth Bureau of Helminthology: St Albans)

    Google Scholar 

  • Broadley RA (1974) Nematicide screening in bananas. Australasian Plant Pathology Society Newsletter 3, 23. doi: 10.1071/APP9740023

    Article  Google Scholar 

  • Broadley RA (1979a) Non-volatile nematicides for control of burrowing nematode in banana plantations in north Queensland. Australian Journal of Experimental Agriculture and Animal Husbandry 19, 626–630. doi: 10.1071/EA9790626

    Article  Google Scholar 

  • Broadley RA (1979b) Nematicide treatment of banana planting material. Australian Journal of Experimental Agriculture and Animal Husbandry 19, 631–633. doi: 10.1071/EA9790631

    Article  Google Scholar 

  • Broadley RA (1979c) A simple method for estimating banana root rot. Australasian Plant Pathology 8, 24–25. doi: 10.1071/APP9790024

    Article  Google Scholar 

  • Cáceres T, Ying G-G, Kookana R (2002) Sorption of pesticides used in banana production on soils of Ecuador. Australian Journal of Soil Research 40, 1085–1094. doi: 10.1071/SR02015

    Article  Google Scholar 

  • Caswell EP, Sarah J-L, Apt WJ (1991) Nematode parasites of pineapple. In ‘Plant parasitic nematodes in tropical and subtropical agriculture’. (Eds M Luc, RA Sikora, J Bridge) pp. 519–537. (CAB International: Wallingford, UK)

    Google Scholar 

  • Colbran RC (1960a) Chemical control of nematodes in south Queensland pineapple fields. Queensland Journal of Agricultural Science 17, 165–173.

    CAS  Google Scholar 

  • Colbran RC (1960b) Nematode control in pineapples. Queensland Agricultural Journal 86, 386–388.

    Google Scholar 

  • Colbran RC (1964a) Cover crops for nematode control in old banana land. Queensland Journal of Agricultural Science 21, 233–236.

    Google Scholar 

  • Colbran RC (1964b) Effects of treatments of banana ‘bits’ for nematode control on emergence and yield. Queensland Journal of Agricultural Science 21, 237–238.

    Google Scholar 

  • Colbran RC (1969) Cover crops and nematode control in pineapples. Queensland Agricultural Journal 95, 658–661.

    Google Scholar 

  • Collins D, Cirillo L, Abraham L (2004) ‘The Australian horticulture statistics handbook.’ (Horticulture Australia Limited: Sydney)

    Google Scholar 

  • De Waele D, Elsen A (2002) Migratory endoparasites: Pratylenchus and Radopholus species. In ‘Plant resistance to parasitic nematodes’. (Eds JL Starr, RJ Cook, J Bridge) pp. 175–206. (CAB International: Wallingford, UK)

    Chapter  Google Scholar 

  • Drew RA, Smith MK (1990) Field evaluation of tissue-cultured bananas in south-eastern Queensland. Australian Journal of Experimental Agriculture 30, 569–574. doi: 10.1071/EA9900569

    Article  Google Scholar 

  • Eger JE (2000) Development of Telone C-17 and Telone C-35 as methyl bromide alternatives in Florida crops. Nematropica 30, 125.

    Google Scholar 

  • Franzluebbers AJ (2004) Tillage and residue management effects on soil organic matter. In ‘Soil organic matter in sustainable agriculture’. (Eds F Magdoff, RR Weil) pp. 227–268. (CRC Press: Boca Raton, FL)

    Google Scholar 

  • Gallaher RN, McSorley R, Dickson DW (1991) Nematode densities associated with corn and sorghum cropping systems in Florida. Journal of Nematology 23, 668–672.

    CAS  PubMed  Google Scholar 

  • Goring CAI (1972) Fumigants, fungicides and nematicides. In ‘Fumigants, fungicides and nematicides’. (Eds CAI Goring, JW Hamaker) pp. 569–632. (Marcel Dekker Inc.: New York)

    Google Scholar 

  • Hall TJ, Walduck GD, Walker RW (1993) Register of Australian herbage plant cultivars. Australian Journal of Experimental Agriculture 33, 674–676. doi: 10.1071/EA9930674

    Article  Google Scholar 

  • Hamill SD, Smith MK (2004) Tissue culture as a strategy for maintaining biosecurity, enhancing diversity and delivery the benefits of biotechnology. In ‘1st international congress on Musa: harnessing research to improve livelihoods. Abstract guide’. (Eds C Picq, A Vezina) p. 12. (INIBAP-IPGRI: Montpellier, France)

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annual Review of Phytopathology 37, 427–446. doi: 10.1146/annurev. phyto.37.1.427

    Article  CAS  PubMed  Google Scholar 

  • Hu S, van Bruggen AHC, Wakemen RJ, Grunwald NJ (1997) Microbial suppression of in vitro growth of Pythium ultimum and disease incidence in relation to soil C and N availability. Plant and Soil 195, 43–52. doi: 10.1023/A:1004235411183

    Article  CAS  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences 25, 235–265. doi: 10.1080/07352680600611543

    Article  CAS  Google Scholar 

  • McKenry MV, Thomason IJ (1974a) 1,3-dichloropropene and 1,2-dibromoethane compounds. I. Movement and fate as affected by various conditions in several soils. Hilgardia 42, 393–421.

    Google Scholar 

  • McKenry MV, Thomason IJ (1974b) 1,3-dichloropropene and 1,2-dibromoethane compounds. II. Organism-dosage response studies in the laboratory with several nematode species. Hilgardia 42, 422–438.

    Google Scholar 

  • McSorley R, Gallaher RN (1991) Nematode population changes and forage yields of six corn and sorghum cultivars. Journal of Nematology 23, 673–677.

    CAS  PubMed  Google Scholar 

  • McSorley R, Gallaher RN (1993) Population dynamics of plant-parasitic nematodes on cover crops of corn and sorghum. Journal of Nematology 25, 446–453.

    CAS  PubMed  Google Scholar 

  • Muller R, Gooch PS (1982) Organic amendments in nematode control. An examination of the literature. Nematropica 12, 319–326.

    Google Scholar 

  • Oki DS, Giambelluca TW (1987) DBCP, EDB, and TCP contamination of ground water in Hawaii. Ground Water 25, 693–702. doi: 10.1111/j.1745-6584.1987.tb02210.x

    Article  CAS  Google Scholar 

  • Oki DS, Giambelluca TW (1989) Groundwater contamination by nematicides: influence of recharge timing under pineapple crop. Water Resources Bulletin 25, 285–294.

    CAS  Google Scholar 

  • Ophel-Keller K, McKay A, Driver F, Curran J (1999) The cereal root disease testing service. In ‘First Australasian soilborne diseases symposium’. (Ed. R Magarey) pp. 63–64. (Bureau of Sugar Experiment Stations: Brisbane)

    Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D, Herdina, Curran J (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Australasian Plant Pathology 37, 243–253.

    Article  CAS  Google Scholar 

  • Pattison A (2006) Banana root and soil health. FR02025 final report. Horticulture Australia Limited, Sydney, Australia. Available at www. horticulture.com.au/Project_Result/order_form.asp [Verified 15 February 2008]

    Google Scholar 

  • Pattison AB (1994) Control strategies against burrowing nematode in bananas: a north Queensland perspective. In ‘Banana nematodes and weevil borers in Asia and the Pacific’. (Eds RV Valmayor, RG Davide, JM Stanton, NL Treverrow, VN Roa) pp. 217–220. (INIBAP/ASPNET: Los Baños, Laguna, Philippines)

    Google Scholar 

  • Pattison AB, Cobon JA (2003) Integrated systems for managing nematodes on banana. FR99011 Final Report. Horticulture Australia Limited, Sydney, Australia. Available at www.horticulture.com.au/Project_Result/ order_form.asp [Verified 15 February 2008]

    Google Scholar 

  • Pattison AB, Stanton JM, Cobon JA (2000a) Bioassay for enhanced biodegradation of nematicides in soil. Australasian Plant Pathology 29, 52–58. doi: 10.1071/AP00008

    Article  Google Scholar 

  • Pattison AB, Stanton JM, Cobon JA, Doogan VJ (2002) Population dynamics and economic threshold of the nematodes Radopholus similis and Pratylenchus goodeyi on banana in Australia. International Journal of Pest Management 48, 107–111. doi: 10.1080/ 09670870110095737

    Article  Google Scholar 

  • Pattison T, Stanton JM, Treverrow NL, Lindsay S, Campagnolo D (2000b) ‘Managing banana nematodes.’ (Department of Primary Industries: Brisbane)

    Google Scholar 

  • Pattison T, Cobon J, Sikora RA (2006) Soil quality improvement and nematode management on banana farms in Australia. In ‘XVII ACORBAT international meeting. Banana: a sustainable business. Joinville, Santa Catarina, Brazil’. (Eds E Soprano, FA Tcacenco, LA Lichtemberg, MC Silva) pp. 268–283. (ACORBAT/ACAFRUTA: Joinville, Brazil)

    Google Scholar 

  • Porter IJ, Brett RW, Wiseman BM (1999) Alternatives to methyl bromide: chemical fumigants or integrated pest management systems? Australasian Plant Pathology 28, 65–71. doi: 10.1071/AP99009

    Article  Google Scholar 

  • Pung H, Olsen J, Stirling M, Moody P, Pankhurst C, Jackson S, Hickey M, Cotching P (2003) A survey approach to investigate the soil factors associated with the productivity and sustainability of vegetable production in Australia. VG99097 Final Report. Horticulture Australia Limited, Sydney, Australia. Available at www.horticulture.com.au/ Project_Result/order_form.asp [Verified 15 February 2008]

    Google Scholar 

  • Sarah JL (2000) Burrowing nematode. In ‘Diseases of banana’. (Ed. DR Jones) pp. 295–303. (CAB International: Wallingford, UK)

    Google Scholar 

  • Schipke LG, Ramsey MD (1994) Control of banana burrowing nematode (Radopholus similis) by fenamiphos applied through micro-irrigation in North Queensland. Australian Journal of Experimental Agriculture 34, 109–114. doi: 10.1071/EA9940109

    Article  CAS  Google Scholar 

  • Smith MK, Hamill SD, Becker DK, Dale JL (2005) Musa spp. banana and plantain. In ‘Biotechnology of fruit and nut crops’. (Ed. RE Litz) pp. 366–391. (CAB International: Wallingford, UK)

    Chapter  Google Scholar 

  • Stanton JM, Pattison AB, Kopittke RA (2001) A sampling strategy to assess banana crops for damage by Radopholus similis and Pratylenchus goodeyi. Australian Journal of Experimental Agriculture 41, 675–679. doi: 10.1071/EA99122

    Article  Google Scholar 

  • Stirling GR (1991) ‘Biological control of plant-parasitic nematodes.’ (CAB International: Wallingford, UK)

    Google Scholar 

  • Stirling GR (1999) Increasing the adoption of sustainable, integrated management strategies for soilborne diseases of high-value annual crops. Australasian Plant Pathology 28, 72–79. doi: 10.1071/AP99010

    Article  Google Scholar 

  • Stirling GR (2005) Towards sustainable management of root disease problems in pineapple. FR01007 Final Report. Horticulture Australia Limited, Sydney, Australia. Available at www.horticulture.com.au/ Project_Result/order_form.asp [Verified 15 February 2008]

    Google Scholar 

  • Stirling GR (2008) The impact of farming systems on soil biology and soilborne diseases: examples from the Australian sugar and vegetable industries — the case for better integration of sugarcane and vegetable production and implications for future research. Australasian Plant Pathology 37, 1–18. doi: 10.1071/AP07084

    Article  Google Scholar 

  • Stirling GR, Ashley MG (2003) Incidence of soilborne diseases in Australia’s subtropical tomato industry. Australasian Plant Pathology 32, 219–222. doi: 10.1071/AP03004

    Article  Google Scholar 

  • Stirling GR, Eden LM (2008) The impact of organic amendments, mulching and tillage on plant nutrition, Pythium root rot, root-knot nematode and other pests and diseases of capsicum in a subtropical environment, and implications for the development of more sustainable vegetable farming systems. Australasian Plant Pathology 37, 123–131.

    Article  CAS  Google Scholar 

  • Stirling GR, Nikulin A (1993) Population dynamics of plant parasitic nematodes in Queensland pineapple fields and the effects of these nematodes on pineapple production. Australian Journal of Experimental Agriculture 33, 197–206. doi: 10.1071/EA9930197

    Article  Google Scholar 

  • Stirling GR, Kopittke R (2000) Sampling procedures and damage thresholds for root-knot nematode (Meloidogyne javanica) on pineapple. Australian Journal of Experimental Agriculture 40, 1003–1010. doi: 10.1071/ EA00011

    Article  Google Scholar 

  • Stirling GR, Stirling AM (2003) Potential of Brassica green manure crops for controlling root-knot nematode (Meloidogyne javanica) on horticultural crops in a subtropical environment. Australian Journal of Experimental Agriculture 43, 623–630. doi: 10.1071/EA02175

    Article  Google Scholar 

  • Stirling GR, Stanton JM, Marshall JW (1992) The importance of plantparasitic nematodes to Australian and New Zealand agriculture. Australasian Plant Pathology 21, 104–115. doi: 10.1071/APP9920104

    Article  Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM, Pankhurst CE, Moody PW, Bell MJ (2003) Organic amendments enhance biological suppression of plantparasitic nematodes in sugarcane soils. Proceedings of the Australian Society of Sugar Cane Technologists 25 (CD-ROM)

  • Stirling GR, Griffin D, Ophel-Keller K, McKay A, Hartley D, Curran J, Stirling AM, Monsour C, Winch J, Hardie B (2004) Combining an initial risk assessment process with DNA assays to improve prediction of soilborne diseases caused by root-knot nematode (Meloidogyne spp.) and Fusarium oxysporum f. sp. lycopersici in the Queensland tomato industry. Australasian Plant Pathology 33, 285–293. doi: 10.1071/ AP04004

    Article  CAS  Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM, Pankhurst CE, Moody PW, Bell MJ, Halpin N (2005) Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in sugarcane soils. Australasian Plant Pathology 34, 203–211. doi: 10.1071/AP05022

    Article  Google Scholar 

  • Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soilborne diseases on field agricultural systems: organic matter management, cover cropping and other cultural practices. In ‘Soil organic matter in sustainable agriculture’. (Eds F Magdoff, RR Weil) pp. 131–177. (CRC Press: Boca Raton, FL)

    Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In ‘Soil organic matter in sustainable agriculture’. (Eds F Magdoff, RR Weil) pp. 1–43. (CRC Press: Boca Raton, FL)

    Google Scholar 

  • Zeck WM (1971a) The systemic nematicide potential of Nemacur. Pflanzenschutz-Nachrichten Bayer 24, 114–140.

    Google Scholar 

  • Zeck WM (1971b) A rating scheme for the evaluation of root-knot nematode infestations. Pflanzenschutz-Nachrichten Bayer 24, 141–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Stirling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, G.R., Pattison, A.B. Beyond chemical dependency for managing plant-parasitic nematodes: examples from the banana, pineapple and vegetable industries of tropical and subtropical Australia. Australasian Plant Pathology 37, 254–267 (2008). https://doi.org/10.1071/AP08019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP08019

Keywords

Navigation