Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T05:35:41.524Z Has data issue: false hasContentIssue false

Hydromagnetic Structure of a Neutron Star Accreting at Its Polar Caps

Published online by Cambridge University Press:  05 March 2013

A. Melatos
Affiliation:
School of Physics, University of Melbourne, Parkville, Vic 3010, Australia; a.melatos@physics.unimelb.edu.au Theoretical Astrophysics, Mail Code 130–33, California Institute of Technology, Pasadena, CA 91125, USA
E. S. Phinney
Affiliation:
Theoretical Astrophysics, Mail Code 130–33, California Institute of Technology, Pasadena, CA 91125, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hydromagnetic structure of a neutron star accreting symmetrically at both magnetic poles is calculated as a function of accreted mass, Ma, starting from a polytropic sphere plus central magnetic dipole (Ma =0) and evolving the configuration through a quasistatic sequence of twodimensional, Grad–Shafranov equilibria as Ma increases. It is found that the accreted material spreads equatorward under its own weight, compressing the magnetic field into a thin boundary layer and burying it everywhere except in a narrow, equatorial belt. The magnetic dipole moment of the star is given by µ=5.2×1024(B0/1012.5G)1.3(Ma/10−8Mʘ yr−1)0.18(Ma/Mʘ)−1.3Gcm3, and the fractional difference between its principal moments of inertia is given by Є=2.1×10−5(B0/1012.5G)0.27(Ma/10−8Myr−1)0.18(Ma/Mʘ)1.7, for Ma in the range 10−5Ma/Mʘ10−1,where B0 is the pre-accretion magnetic field strength, and Ma is the accretion rate.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Arons, J., & Lea, S. M. 1980, ApJ, 235, 1016 Google Scholar
Basko, M. M., & Sunyaev, R. A. 1976, Soviet Ast., 20, 537 Google Scholar
Bhattacharya, D., & Srinivasan, G. 1995, in X-Ray Binaries, eds W. H. G. Lewin J. van Paradijs, & E. P. J. van den Heuvel (Cambridge: Cambridge University Press), 495 Google Scholar
Bhattacharya, D., Wijers, R. A. M. J., Hartman, J. W., & Verbunt, F. 1992, A&A, 254, 198 Google Scholar
Biskamp, D. 1993, Nonlinear Magnetohydrodynamics (Cambridge: Cambridge University Press)Google Scholar
Blandford, R. D., Applegate, J. H., & Hernquist, L. 1983, MNRAS, 204, 1025 Google Scholar
Blandford, R. D., de Campli, W. M., & Königl, A. 1979, Bull. Am. Astron. Soc., 11, 703 Google Scholar
Blondin, J. M., & Freese, K. 1986, Nature, 323, 786 Google Scholar
Brown, E. F., & Bildsten, L. 1998, ApJ, 496, 915 Google Scholar
Burderi, L., King, A. R., & Wynn, G. A. 1996, MNRAS, 283, L63 Google Scholar
Čadež, V. M., Oliver, R., & Ballester, J. L. 1994, A&A, 282, 934 Google Scholar
Chakrabarty, D., & Morgan, E. H. 1998, Nature, 394, 346 Google Scholar
Chen, K., Ruderman, M., & Zhu, T. 1998, ApJ, 493, 397 Google Scholar
Cheng, K. S., & Dai, Z. G. 1997, ApJ, 476, L39 Google Scholar
Cheng, K. S., & Zhang, C. M. 1998, A&A, 337, 441 Google Scholar
Cumming, A., Zweibel, E., & Bildsten, L. 2001, ApJ, submitted (astro–ph/0102178)Google Scholar
Dungey, J. 1953, MNRAS, 113, 180 Google Scholar
Ghosh, P., & Lamb, F. K. 1979, ApJ, 234, 296 CrossRefGoogle Scholar
Hameury, J. M., Bonazzola, S., Heyvaerts, J., & Lasota, J. P. 1983, A&A, 128, 369 Google Scholar
Hartman, J. W., Bhattacharya, D., Wijers, R., & Verbunt, F. 1997, A&A, 322, 477 Google Scholar
Hundhausen, J. R., Hundhausen, A. J., & Zweibel, E. G. 1981, J. Geophys. Res., 86, 11117Google Scholar
Inogamov, N. A., & Sunyaev, R. A. 1999, Astron. Lett., 25, 269 Google Scholar
Klimchuk, J. A., & Sturrock, P. A. 1989, ApJ, 345, 1034 Google Scholar
Konar, S., & Bhattacharya, D. 1997, MNRAS, 284, 311 Google Scholar
Konar, S., & Bhattacharya, D. 1998, MNRAS, 303, 588 Google Scholar
Konar, S., & Bhattacharya, D. 1999, MNRAS, 308, 795 Google Scholar
Kulkarni, S. R. 1986, ApJ, 306, L85 Google Scholar
Lai, D., & Shapiro, S. L. 1991, ApJ, 383, 745 Google Scholar
Lai, D. 1994, MNRAS, 270, 611 Google Scholar
Litwin, C., Brown, E. F., & Rosner, R. 2001, ApJ, submitted (astro–ph/0101168)Google Scholar
Low, B. C. 1980, Sol. Phys., 65, 147 CrossRefGoogle Scholar
Melatos, A., & Phinney, E. S. 2000, in Pulsar Astronomy — 2000 and Beyond, ASP Conf. Ser., 202, eds N. Kramer N. Wex R. Wielebinski, 651 Google Scholar
Mendell, G. 1998, MNRAS, 296, 903 Google Scholar
Mouschovias, T. C. 1974, ApJ, 192, 37 Google Scholar
Muslimov, A. G., & Tsygan, A. I. 1985, Soviet Ast. Lett., 11, 80 Google Scholar
Parker, E. N. 1966, ApJ, 145, 811 Google Scholar
Possenti, A., Colpi, M., D'Amico, N., & Burderi, L. 1998, ApJ, 497, L97 Google Scholar
Romani, R. W. 1990, Nature, 347, 741 Google Scholar
Romani, R. W. 1993, in Isolated Pulsars, eds K. A. van Riper R. Epstein, & C. Ho (Cambridge: Cambridge University Press), 75 Google Scholar
Ruderman, M. 1991a, ApJ, 366, 261 Google Scholar
Ruderman, M. 1991b, ApJ, 382, 576 Google Scholar
Sahrling, M. 1998, preprint (astro–ph/9804047)Google Scholar
Sang, Y., & Chanmugam, G. 1987, ApJ, 323, L61 Google Scholar
Sengupta, S. 1998, ApJ, 501, 792 Google Scholar
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: Wiley)CrossRefGoogle Scholar
Shibazaki, N., Murakami, T., Shaham, J., & Nomoto, K. 1989, Nature, 342, 656 Google Scholar
Shu, F. H., 1992, The Physics of Astrophysics. Vol. II: Gas Dynamics (Mill Valley: University Science Books)Google Scholar
Sozou, C. 1998, MNRAS, 295, 216 Google Scholar
Srinivasan, G., Bhattacharya, D., Muslimov, A., & Tsygan, A. 1990, Curr. Sci., 59, 31 Google Scholar
Taam, R. E., & van den Heuvel, E. P. J. 1986, ApJ, 305, 235 Google Scholar
Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194 Google Scholar
Toropin, Y. M., Toropina, O. D., Savelyev, V. V., Romanova, M. M., Chechetkin, V. M., & Lovelace, R. V. E. 1999, ApJ, 517, 906 Google Scholar
Uchida, Y., & Low, B. C. 1981, J. Astrophys. Ast., 2, 405 Google Scholar
Urpin, V., & Geppert, U. 1995, MNRAS, 275, 1117 Google Scholar
Urpin, V., & Konenkov, D. 1997, MNRAS, 284, 741 Google Scholar
Urpin, V. A., & Muslimov, A. G. 1992, MNRAS, 256, 261 Google Scholar
Urpin, V., & Shalybkov, D. 1999, MNRAS, 304, 451 Google Scholar
van den Heuvel, E. P. J., & Bitzaraki, O. 1995, A&A, 297, L41 Google Scholar
Verbunt, F., Wijers, R. A. M. J., & Burm, H. 1990, A&A, 234, 195 Google Scholar
Webb, G. M. 1988, ApJ, 327, 933 Google Scholar
Wijers, R. A. M. J. 1997, MNRAS, 287, 607 Google Scholar
Wijnands, R., & van der Klis, M. 1998, Nature, 394, 344 Google Scholar
Zhang, C.-M., Wu, X.-J., & Yang, G.-C. 1994, A&A, 283, 889 Google Scholar
Zweibel, E. G., & Hundhausen, A. J. 1982, Sol. Phys., 76, 261 Google Scholar