Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Incorporation of Vanadium and Molybdenum into Yttrium-Arsenotungstates Supported by Amino Acid Ligands

Fateme Akhlaghi Bagherjeri A , Chris Ritchie A B , Robert W. Gable A , Gary Bryant C and Colette Boskovic A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Melbourne, Parkville, Vic. 3010, Australia.

B Current address: School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Centre for Molecular and Nanoscale Physics, School of Science, RMIT University, Melbourne, Vic. 3001, Australia.

D Corresponding author. Email: c.boskovic@unimelb.edu.au

Australian Journal of Chemistry 73(3) 137-144 https://doi.org/10.1071/CH19326
Submitted: 16 July 2019  Accepted: 5 August 2019   Published: 9 September 2019

Abstract

The preference for incorporation of molybdenum over tungsten into specific sites of a family of yttrium-arsenotungstates with amino acid ligands prompted exploration of the incorporation of other metals, affording three new vanadium-containing (V/W and V/Mo/W) analogues: K2(GlyH)10[As4(V2W2)W44Y4O160(Gly)8(H2O)12]·11Gly (1), (MBAH)9(L-NleH)3[As4(V2W2)W44Y4O160(L-Nle)8(H2O)12] (2), and (MBAH)9(L-NleH)3[As4(V2W2)Mo2W42Y4O160(L-Nle)8(H2O)12] (3) (Gly = glycine and L-Nle = l-norleucine, MBAH = 4-methylbenzylammonium). These hybrid polyoxometalates all possess a tetrametallic oxo-bridged {VIV2WVI2} central core surrounded by an amino acid-ligated cyclic metal-oxo framework. X-Ray photoelectron, UV-visible reflectance, and electron paramagnetic resonance spectroscopy, together with metal analysis, confirm the incorporation of vanadium into the polyoxometalates, while single crystal X-ray diffraction analysis supports the location of the vanadium atoms in the central core.


References

[1]  Catalysts for Fine Chemical Synthesis: Catalysis by Polyoxometalates, Volume 2 (Ed. I. Kozhevnikov) 2002 (Wiley: Hoboken, NJ).

[2]  I. A. Weinstock, R. E. Schreiber, R. Neumann, Chem. Rev. 2018, 118, 2680.
         | Crossref | GoogleScholarGoogle Scholar | 29192770PubMed |

[3]  Q. Yin, C. L. Hill, Nat. Chem. 2018, 10, 6.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Yamase, Chem. Rev. 1998, 98, 307.
         | Crossref | GoogleScholarGoogle Scholar | 11851508PubMed |

[5]  G. Bernardini, A. G. Wedd, C. Zhao, A. M. Bond, Proc. Natl. Acad. Sci. USA 2012, 109, 11552.
         | Crossref | GoogleScholarGoogle Scholar | 22753501PubMed |

[6]  J. M. Cameron, D. J. Wales, G. N. Newton, Dalton Trans. 2018, 47, 5120.
         | Crossref | GoogleScholarGoogle Scholar | 29517788PubMed |

[7]  A. Dolbecq, E. Dumas, C. R. Mayer, P. Mialane, Chem. Rev. 2010, 110, 6009.
         | Crossref | GoogleScholarGoogle Scholar | 20666374PubMed |

[8]  M.-P. Santoni, G. S. Hanan, B. Hasenknopf, Coord. Chem. Rev. 2014, 281, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. M. Poblet, X. López, C. Bo, Chem. Soc. Rev. 2003, 32, 297.
         | Crossref | GoogleScholarGoogle Scholar | 14518183PubMed |

[10]  L. Parent, P. A. Aparicio, P. De Oliveira, A. L. Teillout, J. M. Poblet, X. López, I. M. Mbomekallé, Inorg. Chem. 2014, 53, 5941.
         | Crossref | GoogleScholarGoogle Scholar | 24892769PubMed |

[11]  E. Cadot, M. Fournier, A. Tézé, G. Hervé, Inorg. Chem. 1996, 35, 282.
         | Crossref | GoogleScholarGoogle Scholar | 11666206PubMed |

[12]  J. J. Altenau, M. T. Pope, R. A. Prados, H. So, Inorg. Chem. 1975, 14, 417.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. A. Prados, M. T. Pope, Inorg. Chem. 1976, 15, 2547.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. P. Harmalker, M. A. Leparulo, M. T. Pope, J. Am. Chem. Soc. 1983, 105, 4286.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  X. López, C. Bo, J. M. Poblet, J. Am. Chem. Soc. 2002, 124, 12574.
         | Crossref | GoogleScholarGoogle Scholar | 12381202PubMed |

[16]  A. M. Khenkin, L. Weiner, Y. Wang, R. Neumann, J. Am. Chem. Soc. 2001, 123, 8531.
         | Crossref | GoogleScholarGoogle Scholar | 11525661PubMed |

[17]  A. M. Khenkin, R. Neumann, Angew. Chem. Int. Ed. 2000, 39, 4088.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Neumann, A. M. Khenkin, Chem. Commun. 2006, 2529.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. N. Miras, D. J. Stone, E. J. L. McInnes, R. G. Raptis, P. Baran, G. I. Chilas, M. P. Sigalas, T. A. Kabanos, L. Cronin, Chem. Commun. 2008, 52, 4703.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. David, C. Crăciun, V. Rusu, O. Cozara, P. Ilea, D. Rusu, Polyhedron 2000, 19, 1917.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Vonci, F. Akhlaghi Bagherjeri, P. D. Hall, R. W. Gable, A. Zavras, R. A. J. O’Hair, Y. Liu, J. Zhang, M. R. Field, M. B. Taylor, J. Du Plessis, G. Bryant, M. Riley, L. Sorace, P. A. Aparicio, X. López, J. M. Poblet, C. Ritchie, C. Boskovic, Chem. – Eur. J. 2014, 20, 14102.
         | Crossref | GoogleScholarGoogle Scholar | 25204640PubMed |

[22]  F. Akhlaghi Bagherjeri, M. Vonci, E. A. Nagul, C. Ritchie, R. W. Gable, M. B. Taylor, G. Bryant, S.-X. Guo, J. Zhang, P. A. Aparicio, X. López, J. M. Poblet, C. Boskovic, Inorg. Chem. 2016, 55, 12329.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  F. Akhlaghi Bagherjeri, C. Ritchie, R. W. Gable, C. Boskovic, Eur. J. Inorg. Chem. 2019, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. Boskovic, Acc. Chem. Res. 2017, 50, 2205.
         | Crossref | GoogleScholarGoogle Scholar | 28872827PubMed |

[25]  A. Muller, C. Serain, Acc. Chem. Res. 2000, 33, 2.
         | Crossref | GoogleScholarGoogle Scholar | 10639070PubMed |

[26]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  T. Ueda, M. Ohnishi, M. Shiro, J. Nambu, T. Yonemura, J. F. Boas, A. M. Bond, Inorg. Chem. 2014, 53, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 24784547PubMed |

[30]  T. Ueda, J.-I. Nambu, J. Lu, S.-X. Guo, Q. Li, J. F. Boas, L. L. Martin, A. M. Bond, Dalton Trans. 2014, 43, 5462.
         | Crossref | GoogleScholarGoogle Scholar | 24522563PubMed |

[31]  S. Spillane, R. Sharma, A. Zavras, R. Mulder, C. A. Ohlin, L. Goerigk, R. A. J. O’Hair, C. Ritchie, Angew. Chem. Int. Ed. 2017, 56, 8568.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. C. Fuggle, N. Martensson, J. Electron Spectrosc. Relat. Phenom. 1980, 21, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T. H. Fleisch, J. Chem. Phys. 1982, 76, 780.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  W. Feng, Y. Ding, Y. Liu, R. Lu, Mater. Chem. Phys. 2006, 98, 347.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Wang, H. Li, C. Wu, Y. Yang, L. Shi, L. Wu, Angew. Chem. Int. Ed. 2013, 52, 4577.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. Wang, P. Yin, J. Zhang, J. Hao, C. Lv, F. Xiao, Y. Wei, Chem. – Eur. J. 2011, 17, 4796.
         | Crossref | GoogleScholarGoogle Scholar | 21404340PubMed |

[37]  J. Zhang, W. Li, C. Wu, B. Li, L. Wu, J. Zhang, L. Wu, Chem. – Eur. J. 2013, 19, 8129.
         | Crossref | GoogleScholarGoogle Scholar | 23616444PubMed |

[38]  A. K. Iyer, S. C. Peter, Inorg. Chem. 2014, 53, 653.
         | Crossref | GoogleScholarGoogle Scholar | 24358992PubMed |

[39]  D. P. Smith, M. T. Pope, Inorg. Chem. 1973, 12, 331.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  D. P. Smith, H. So, J. Bender, M. T. Pope, Inorg. Chem. 1973, 12, 685.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  J. Nambu, T. Ueda, S.-X. Guo, J. F. Boas, A. M. Bond, Dalton Trans. 2010, 39, 7364.
         | Crossref | GoogleScholarGoogle Scholar | 20603658PubMed |