Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Chemical Modification of Cellulose Membranes for SPOT Synthesis

Wenyi Li https://orcid.org/0000-0003-3584-0301 A D , John D. Wade https://orcid.org/0000-0002-1352-6568 B C , Eric Reynolds https://orcid.org/0000-0002-6618-4856 A and Neil M. O’Brien-Simpson https://orcid.org/0000-0001-8462-5603 A D
+ Author Affiliations
- Author Affiliations

A Bio21 Institute and Melbourne Dental School, University of Melbourne, Melbourne, Vic. 3010, Australia.

B Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia.

C School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.

D Corresponding authors. Email: wenyi.li@unimelb.edu.au; neil.obs@unimelb.edu.au




Wenyi Li received his doctoral degree in 2016 from the University of Melbourne under the supervision of Professors John D. Wade and Frances Separovic. His doctoral thesis on antimicrobial peptide development was awarded the Graham Johnston Best Thesis Award by the RACI. From 2016 to 2018, he was based at the Leibniz-Institute of Molecular Pharmacology, Germany, where he was partially supported as a Leibniz-DAAD postdoctoral fellow, conducting research into protein semisynthesis and chemical ligation. In November 2018, he moved back to the University of Melbourne to work on further development of antibacterial polymers and peptides in the groups of Professors Neil M. O’Brien-Simpson and Greg Qiao.



John D. Wade obtained his Ph.D. degree on the structural basis of the diabetogenic action of growth hormones in 1979 from Monash University, Australia. He received a Nuffield Foundation Fellowship to Cambridge, UK, to undertake post-doctoral studies on the development of the Fmoc-solid phase peptide synthesis methodology in the laboratory of Dr R. C. Sheppard at the MRC Laboratory of Molecular Biology. In 1983, he returned to Melbourne at the invitation of the now Florey Institute of Neuroscience and Mental Health, University of Melbourne, where he heads the Laboratory of Peptide and Protein Chemistry. His interests are in solid phase peptide synthesis of large, complex, functionalized and often multi-chain peptides. Professor Wade is an NHMRC of Australia Principal Research Fellow and a Fellow of both the Royal Australian Chemical Institute and the Royal Society of Chemistry.



Laureate Professor Eric Reynolds AO PhD FICD FTSE FRACDS is Chief Executive Officer and Research Director of the Oral Health CRC at the Melbourne Dental School in The University of Melbourne. Eric was Head of the Melbourne Dental School for 16 years until 2015. He has lectured and published extensively and has chaired and participated in a wide range of professional committees and panels.



Neil M. O’Brien-Simpson graduated from Edinburgh Napier University in 1992 with a B.Sc. with honours in science and management studies. He moved to Australia and completed a Ph.D. in peptide-polymer vaccines in 1998 at The University of Melbourne. He is currently a professor and his research interests include antimicrobial peptides/materials, nanoparticles for peptide and vaccine delivery and bacterial outer membrane vesicles-host interactions. He has several editorial duties and is the current president of the Peptide Users Group of the Royal Australian Chemical Institute.

Australian Journal of Chemistry 73(3) 78-84 https://doi.org/10.1071/CH19335
Submitted: 19 July 2019  Accepted: 17 August 2019   Published: 12 September 2019

Abstract

Since the development of solid-phase peptide synthesis in the 1960s, many laboratories have modified the technology for the production of peptide arrays to facilitate the discovery of novel peptide mimetics and therapeutics. One of these, known as SPOT synthesis, enables parallel peptide synthesis on cellulose paper sheets and has several advantages over other peptide arrays methods. Today, the SPOT technique remains one of the most frequently used methods for synthesis and screening of peptides on arrays. Although polypropylene and glass can be used for the preparation of peptide arrays, the most commonly used material for SPOT membranes is cellulose. Critical to the success of the SPOT synthesis is the ability to modify a cellulose membrane to make it more suitable for solid-phase peptide synthesis of peptides and their analogues. In this review, we highlight the current range of chemical modifications of cellulose that have been developed to enable SPOT synthesis and further enhance its impact on peptide drug discovery. This will contribute to further chemical modifications and applications of SPOT synthesis for peptide arrays and peptide therapeutic screening.


References

[1]  F. G. Banting, C. H. Best, J. B. Collip, W. R. Campbell, A. A. Fletcher, Can. Med. Assoc. J. 1922, 12, 141.
         | 20314060PubMed |

[2]  (a) R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. Atherton, H. Fox, D. Harkiss, R. C. Sheppard, J. Chem. Soc. Chem. Commun. 1978, 539.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Atherton, H. Fox, D. Harkiss, C. J. Logan, R. C. Sheppard, B. J. Williams, J. Chem. Soc. Chem. Commun. 1978, 537.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. L. Lau, M. K. Dunn, Bioorg. Med. Chem. 2018, 26, 2700.
         | Crossref | GoogleScholarGoogle Scholar | 28720325PubMed |

[4]  K. Fosgerau, T. Hoffmann, Drug Discov. Today 2015, 20, 122.
         | Crossref | GoogleScholarGoogle Scholar | 25450771PubMed |

[5]  M. Liang, W. Chao, H. Zihao, C. Biao, Z. Ling, H. Kun, Curr. Med. Chem. 2017, 24, 3373.

[6]  G. P. Smith, V. A. Petrenko, Chem. Rev. 1997, 97, 391.
         | Crossref | GoogleScholarGoogle Scholar | 11848876PubMed |

[7]  K. S. Lam, M. Lebl, V. Krchňák, Chem. Rev. 1997, 97, 411.
         | Crossref | GoogleScholarGoogle Scholar | 11848877PubMed |

[8]  S. Fodor, J. Read, M. Pirrung, L. Stryer, A. Lu, D. Solas, Science 1991, 251, 767.
         | Crossref | GoogleScholarGoogle Scholar | 1990438PubMed |

[9]  A. Kramer, E. Vakalopoulou, W.-D. Schleuning, J. Schneider-Mergener, Mol. Immunol. 1995, 32, 459.
         | Crossref | GoogleScholarGoogle Scholar | 7540256PubMed |

[10]  (a) H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, M. Snyder, Nat. Genet. 2000, 26, 283.
         | Crossref | GoogleScholarGoogle Scholar | 11062466PubMed |
      (b) G. MacBeath, S. L. Schreiber, Science 2000, 289, 1760.

[11]  L. C. Szymczak, H.-Y. Kuo, M. Mrksich, Anal. Chem. 2018, 90, 266.
         | Crossref | GoogleScholarGoogle Scholar | 29135227PubMed |

[12]  (a) R. A. Houghten, Proc. Natl. Acad. Sci. USA 1985, 82, 5131.
         | Crossref | GoogleScholarGoogle Scholar | 2410914PubMed |
      (b) H. M. Geysen, R. H. Meloen, S. J. Barteling, Proc. Natl. Acad. Sci. USA 1984, 81, 3998.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. Frank, R. Döring, Tetrahedron 1988, 44, 6031.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  V. Stadler, T. Felgenhauer, M. Beyer, S. Fernandez, K. Leibe, S. Güttler, M. Gröning, K. König, G. Torralba, M. Hausmann, V. Lindenstruth, A. Nesterov, I. Block, R. Pipkorn, A. Poustka, F. R. Bischoff, F. Breitling, Angew. Chem. Int. Ed. 2008, 47, 7132.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  R. Frank, Tetrahedron 1992, 48, 9217.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Hilpert, Mini Rev. Org. Chem. 2011, 8, 157.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  R. Frank, J. Immunol. Methods 2002, 267, 13.
         | Crossref | GoogleScholarGoogle Scholar | 12135797PubMed |

[18]  (a) A. Kramer, R. Volkmer-Engert, R. Malin, U. Reineke, J. Schneider-Mergener, Pept. Res. 1993, 6, 314.
         | 7507364PubMed |
      (b) A. Kramer, A. Schuster, U. Reineke, R. Malin, R. Volkmer-Engert, C. Landgraf, J. Schneider-Mergener, Methods 1994, 6, 388.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  F. Molina, D. Laune, C. Gougat, B. Pau, C. Granier, Pept. Res. 1996, 9, 151.
         | 8875595PubMed |

[20]  A. Kramer, T. Keitel, K. Winkler, W. Stöcklein, W. Höhne, J. Schneider-Mergener, Cell 1997, 91, 799.
         | Crossref | GoogleScholarGoogle Scholar | 9413989PubMed |

[21]  Q. Seisel, M. Rädisch, N. P. Gill, D. R. Madden, P. Boisguerin, Bioorg. Med. Chem. Lett. 2017, 27, 3111.
         | Crossref | GoogleScholarGoogle Scholar | 28549735PubMed |

[22]  K. Hilpert, R. Volkmer-Engert, T. Walter, R. E. W. Hancock, Nat. Biotechnol. 2005, 23, 1008.
         | Crossref | GoogleScholarGoogle Scholar | 16041366PubMed |

[23]  M. E. C. Bluhm, D. Knappe, R. Hoffmann, Eur. J. Med. Chem. 2015, 103, 574.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  E. F. Haney, S. C. Mansour, A. L. Hilchie, C. de la Fuente-Núñez, R. E. W. Hancock, Peptides 2015, 71, 276.
         | Crossref | GoogleScholarGoogle Scholar | 25836992PubMed |

[25]  R. Kato, Y. Okuno, C. Kaga, M. Kunimatsu, T. Kobayashi, H. Honda, J. Pept. Res. 2005, 66, 146.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. N. Sulochana, R. Ge, Curr. Pharm. Des. 2007, 13, 2074.
         | Crossref | GoogleScholarGoogle Scholar | 17627540PubMed |

[27]  (a) T. Ziegler, C. Schips, Nat. Protoc. 2006, 1, 1987.
         | Crossref | GoogleScholarGoogle Scholar | 17487187PubMed |
      (b) K. Günther, C. Schips, T. Ziegler, J. Carbohydr. Chem. 2008, 27, 446.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. M. Bray, N. Joe Maeji, H. Mario Geysen, Tetrahedron Lett. 1990, 31, 5811.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  F. Deiss, Y. Yang, W. L. Matochko, R. Derda, Org. Biomol. Chem. 2016, 14, 5148.
         | Crossref | GoogleScholarGoogle Scholar | 27184468PubMed |

[30]  R. Volkmer-Engert, B. Hoffmann, J. Schneider-Mergener, Tetrahedron Lett. 1997, 38, 1029.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. M. Bray, N. J. Maeji, A. G. Jhingran, R. M. Valerio, Tetrahedron Lett. 1991, 32, 6163.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) K. Licha, S. Bhargava, C. Rheinländer, A. Becker, J. Schneider-Mergener, R. Volkmer-Engert, Tetrahedron Lett. 2000, 41, 1711.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Boisguerin, R. Leben, B. Ay, G. Radziwill, K. Moelling, L. Dong, R. Volkmer-Engert, Chem. Biol. 2004, 11, 449.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M. D. Bowman, R. C. Jeske, H. E. Blackwell, Org. Lett. 2004, 6, 2019.
         | Crossref | GoogleScholarGoogle Scholar | 15176808PubMed |

[34]  H. Rink, Tetrahedron Lett. 1987, 28, 3787.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. P. Holmes, D. G. Jones, J. Org. Chem. 1995, 60, 2318.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. Ast, N. Heine, L. Germeroth, J. Schneider-Mergener, H. Wenschuh, Tetrahedron Lett. 1999, 40, 4317.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  (a) P. M. López-Pérez, E. Grimsey, L. Bourne, R. Mikut, K. Hilpert, Front Chem. 2017, 5, 25.
         | Crossref | GoogleScholarGoogle Scholar | 28447030PubMed |
      (b) R. Rathinakumar, W. C. Wimley, FASEB J. 2010, 24, 3232.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  (a) S. Picaud, P. Filippakopoulos, Microarrays 2015, 4, 370.
         | Crossref | GoogleScholarGoogle Scholar | 27600229PubMed |
      (b) C. Katz, L. Levy-Beladev, S. Rotem-Bamberger, T. Rito, S. G. D. Rüdiger, A. Friedler, Chem. Soc. Rev. 2011, 40, 2131.
         | Crossref | GoogleScholarGoogle Scholar |