Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Evaluation of the taxonomic position of the genus Carinina (Nemertea : Palaeonemertea), with descriptions of two new species

Alexei V. Chernyshev https://orcid.org/0000-0002-2203-3001 A D , Neonila E. Polyakova A , Terra C. Hiebert B and Svetlana A. Maslakova https://orcid.org/0000-0002-3629-6638 C
+ Author Affiliations
- Author Affiliations

A A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok RU-690041, Russia.

B Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA.

C Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, OR 97420, USA.

D Corresponding author. Email: nemertea1969@gmail.com

Invertebrate Systematics 35(3) 245-260 https://doi.org/10.1071/IS20061
Submitted: 14 August 2020  Accepted: 25 October 2020   Published: 24 March 2021

Abstract

The genus Carinina Hubrecht, 1885 has long been considered the most ‘archaic’ nemertean taxon because its members are distinguished by the basiepidermal position of the brain and lateral nerve cords, characters thought to be plesiomorphic for the phylum. Here we describe two new species, Carinina yushini sp. nov. from the Sea of Japan (Russia) and C. chocolata sp. nov. from the north-east Pacific (Oregon, USA), distinguished by brown body colour. A phylogenetic analysis based on partial sequences of five nuclear and mitochondrial gene regions, 18S rRNA, 28S rRNA, histone H3, 16S rRNA and COI, confirms the monophyly of Carinina (Family Carininidae), and points to a close relationship to Carinoma (Family Carinomidae). The two groups together form a sister clade to the rest of the palaeonemerteans (Family Tubulanidae + Family Cephalotrichidae s.l.). Carinina plecta most likely belongs to the Tubulanidae. A morphological synapomorphy of the clade Carininidae + Carinomidae is a larva with a single midventral eye (in contrast to eyeless larvae of the Tubulanidae and two-eyed larvae of the Cephalotrichidae). Our phylogenetic analysis suggests that the basiepidermal position of the central nervous system is an autapomorphy of Carininidae (and, independently, C. plecta), rather than a plesiomorphy of the phylum Nemertea or the class Palaeonemertea, emphasising that the genus Carinina is no more archaic than any other palaeonemertean genus.


References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Crossref | GoogleScholarGoogle Scholar | 9254694PubMed |

Andrade, S. C. S., Strand, M., Schwartz, M., Chen, H.-X., Kajihara, H., von Döhren, J., Sun, S., Junoy, J., Thiel, M., Norenburg, J. L., Turbeville, J. M., Giribet, G., and Sundberg, P. (2012). Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea. Cladistics 28, 141–159.
Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea.Crossref | GoogleScholarGoogle Scholar |

Beckers, P., Loesel, R., and Bartolomaeus, T. (2013). The nervous systems of basally branching Nemertea (Palaeonemertea). PLoS One 8, e66137.
The nervous systems of basally branching Nemertea (Palaeonemertea).Crossref | GoogleScholarGoogle Scholar | 23785478PubMed |

Beckers, P., Helm, C., Purschke, G., Worsaae, K., Hutchings, P., and Bartolomaeus, T. (2019). The central nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral annelid brain. Frontiers in Zoology 16, 6.
The central nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral annelid brain.Crossref | GoogleScholarGoogle Scholar | 30911320PubMed |

Bürger, O. (1905). Nemertini (Schnurwürmer). In ‘Klassen und Ordnungen des Tier-Reichs’. (Ed. H. G. Bronn.) Bd 4, Suppl., pp. 385–480. (C.F. Winter: Leipzig, Germany.)

Chaban, E. M., and Chernyshev, A. V. (2008). Type specimens of benthic nemerteans (Nemertea, Enopla) in the Zoological Institute (St Petersburg). Zoosystematica Rossica 17, 53–60.

Chernyshev, A. V. (1999). Nemertines of the family Carinomidae (Nemertea, Anopla). 2. Origin and taxonomic position of Carinomidae. Зоологический журнал 78, 1407–1416.

Chernyshev, A. V. (2011). ‘Comparative Morphology, Systematics and Phylogeny of the Nemerteans.’ (Dalnauka: Vladivostok, Russian Federation.) [In Russian].

Chernyshev, A. V. (2020). Nemerteans from the Far Eastern Seas of Russia. Russian Journal of Marine Biology 46, 141–153.
Nemerteans from the Far Eastern Seas of Russia.Crossref | GoogleScholarGoogle Scholar |

Chernyshev, A. V., and Polyakova, N. E. (2018a). Nemerteans from deep-sea expedition SokhoBiol. with description of Uniporus alisae sp. nov. (Hoplonemertea: Reptantia s.l.) from the Sea of Okhotsk. Deep-sea Research – II. Topical Studies in Oceanography 154, 121–139.
Nemerteans from deep-sea expedition SokhoBiol. with description of Uniporus alisae sp. nov. (Hoplonemertea: Reptantia s.l.) from the Sea of Okhotsk.Crossref | GoogleScholarGoogle Scholar |

Chernyshev, A. V., and Polyakova, N. E. (2018b). Nemerteans of the Vema-TRANSIT expedition: first data on diversity with description of two new genera and species. Deep-sea Research – II. Topical Studies in Oceanography 148, 64–73.
Nemerteans of the Vema-TRANSIT expedition: first data on diversity with description of two new genera and species.Crossref | GoogleScholarGoogle Scholar |

Chernyshev, A. V., and Polyakova, N. E. (2019). Nemerteans from the deep-sea expedition KuramBiol. II with descriptions of three new hoplonemerteans from the Kuril–Kamchatka Trench. Progress in Oceanography 178, 102148.
Nemerteans from the deep-sea expedition KuramBiol. II with descriptions of three new hoplonemerteans from the Kuril–Kamchatka Trench.Crossref | GoogleScholarGoogle Scholar |

Chernyshev, A. V., Polyakova, N. E., Turanov, S. V., and Kajihara, H. (2018). Taxonomy and phylogeny of Lineus torquatus and allies (Nemertea, Lineidae) with descriptions of a new genus and a new cryptic species. Systematics and Biodiversity 16, 55–68.
Taxonomy and phylogeny of Lineus torquatus and allies (Nemertea, Lineidae) with descriptions of a new genus and a new cryptic species.Crossref | GoogleScholarGoogle Scholar |

Chernyshev, A. V., Polyakova, N. E., Britayev, T. A., Bratova, O., and Mekhova, E. S. (2019). Cephalotrichella echinicola sp. nov. (Palaeonemertea, Cephalotrichellidae), a new nemertean associated with sea urchins from Nha Trang Bay (South China Sea). Invertebrate Systematics 33, 518–529.
Cephalotrichella echinicola sp. nov. (Palaeonemertea, Cephalotrichellidae), a new nemertean associated with sea urchins from Nha Trang Bay (South China Sea).Crossref | GoogleScholarGoogle Scholar |

Coe, W. R. (1943). Biology of the nemerteans of the Atlantic coast of North America. Transactions of the Connecticut Academy of Arts and Sciences 35, 129–328.

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Fernández-Álvarez, F. A., and Anadon, N. (2013). Redescription of Tubulanus mawsoni (Wheeler 1940) comb. nov. (Palaeonemertea: Tubulanidae) from the Bellingshausen Sea (Antarctica). New Zealand Journal of Zoology 40, 263–279.
Redescription of Tubulanus mawsoni (Wheeler 1940) comb. nov. (Palaeonemertea: Tubulanidae) from the Bellingshausen Sea (Antarctica).Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Gibson, R. (1982). Nemertea. In ‘Synopsis and Classification of Living Organisms’. (Ed. S. P. Parker.) Vol. 12, pp. 823–846. (McGraw-Hill: New York, NY, USA.)

Gibson, R., and Sundberg, P. (1999). Six new species of palaeonemerteans (Nemertea) from Hong Kong. Zoological Journal of the Linnean Society 125, 151–196.
Six new species of palaeonemerteans (Nemertea) from Hong Kong.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Distel, D. L. (2003). Bivalve phylogeny and molecular data. In ‘Molecular Systematics and Phylogeography of Molluscs’. (Eds C. Lydeard, and D. R. Lindberg.) pp. 45–90. (Smithsonian Books: Washington, DC, USA.) Available at https://j.mp/2pdHQvH.

Giribet, G., and Wheeler, W. C. (2002). On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121, 271–324.
On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguna, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |

Giribet, G., Distel, D. L., Polz, M., Sterrer, W., and Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology 49, 539–562.
Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 12116426PubMed |

Giribet, G., Okusu, A., Lindgren, A. R., Huff, S. W., Schrödl, M., and Nishiguchi, M. K. (2006). Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons. Proceedings of the National Academy of Sciences of the United States of America 103, 7723–7728.
Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons.Crossref | GoogleScholarGoogle Scholar | 16675549PubMed |

Hiebert, T. C. (2016). New Nemertean diversity discovered in the Northeast Pacific using surveys of both planktonic larvae and benthic adults. Ph.D. Thesis, University of Oregon, Eugene, OR, USA. Available at http://hdl.handle.net/1794/20407.

Hylbom, R. (1957). Studies on palaeonemerteans of the Gullmar Fiord area (west coast of Sweden). Arkiv för Zooloogi, Ser. 2 10, 539–582.

Iwata, F. (1960). Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publications from the Akkeshi Marine Biological Station 10, 1–51.

Iwata, F. (1985). Foregut formation of the nemerteans and its role in nemertean systematics. American Zoologist 25, 23–36.
Foregut formation of the nemerteans and its role in nemertean systematics.Crossref | GoogleScholarGoogle Scholar |

Kajihara, H. (2006). Four palaeonemerteans (Nemertea: Anopla) from a tidal flat in middle Honshu, Japan. Zootaxa 1163, 1–47.
Four palaeonemerteans (Nemertea: Anopla) from a tidal flat in middle Honshu, Japan.Crossref | GoogleScholarGoogle Scholar |

Kajihara, H., Kakui, K., Yamasaki, H., and Hiruta, S. F. (2015). Tubulanus tamias sp. nov. (Nemertea: Palaeonemertea) with two different types of epidermal eyes. Zoological Science 32, 596–604.
Tubulanus tamias sp. nov. (Nemertea: Palaeonemertea) with two different types of epidermal eyes.Crossref | GoogleScholarGoogle Scholar | 26654043PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. L., and Drummond, A. J. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kvist, S., Laumer, C. E., Junoy, J., and Giribet, G. (2014). New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebrate Systematics 28, 287–308.
New insights into the phylogeny, systematics and DNA barcoding of Nemertea.Crossref | GoogleScholarGoogle Scholar |

Kvist, S., Chernyshev, A. V., and Giribet, G. (2015). Phylogeny of Nemertea with special interest in the placement of diversity from Far East Russia and northeast Asia. Hydrobiologia 760, 105–119.
Phylogeny of Nemertea with special interest in the placement of diversity from Far East Russia and northeast Asia.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear, R., Calcott, B., Kainer, D., Mayer, C., and Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14, 82.
Selecting optimal partitioning schemes for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar | 24742000PubMed |

Littlewood, D. T. J. (1994). Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogenetics and Evolution 3, 221–229.
Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences.Crossref | GoogleScholarGoogle Scholar |

Maslakova, S. A., and Hiebert, T. C. (2014). From trochophore to pilidium and back again – a larva’s journey. The International Journal of Developmental Biology 58, 585–591.
From trochophore to pilidium and back again – a larva’s journey.Crossref | GoogleScholarGoogle Scholar | 25690972PubMed |

Maslakova, S. A., Martindale, M. Q., and Norenburg, J. L. (2004). Vestigial prototroch in a basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Evolution & Development 6, 219–226.
Vestigial prototroch in a basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘2010 Gateway Computing Environments Workshop (GCE)’, 23 December 2010, New Orleans, LA, USA. INSPEC Accession number 11705685. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA.) 10.1109/GCE.2010.5676129

Müller, G. J. (1965). Carinina heterosoma n. sp. si cîteva consideratii asupra genului Carinina (Vermes, Palaeonemertini). Hidrobiologia 6, 243–257.

Noren, M., and Jondelius, U. (1999). Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences. Cladistics 15, 103–112.
Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). The simple fools guide to PCR, ver. 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI, USA.

Passamaneck, Y., and Halanych, K. M. (2006). Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Molecular Phylogenetics and Evolution 40, 20–28.
Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly.Crossref | GoogleScholarGoogle Scholar | 16556507PubMed |

Purschke, G. (2002). On the ground pattern of the Annelida. Organisms, Diversity & Evolution 2, 181–196.
On the ground pattern of the Annelida.Crossref | GoogleScholarGoogle Scholar |

Purschke, G., Bleidorn, C., and Struck, T. (2014). Systematics, evolution and phylogeny of Annelida – a morphological perspective. Memoirs of the Museum of Victoria 71, 247–269.
Systematics, evolution and phylogeny of Annelida – a morphological perspective.Crossref | GoogleScholarGoogle Scholar |

Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maulec, A. G., Haltonc, D. W., and Jondeliusd, U. (2004). Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107, 75–86.
Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity.Crossref | GoogleScholarGoogle Scholar | 16351929PubMed |

Raikova, O.I., Meyer-Wachsmuth, I., and Jondelius, U. (2016). The plastic nervous system of Nemertodermatida. Organisms, Diversity & Evolution 16, 85–104.
The plastic nervous system of Nemertodermatida.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Sundberg, P., and Hylbom, R. (1994). Phylogeny of the nemertean subclass Palaeonemertea (Anopla, Nemertea). Cladistics 10, 347–402.
Phylogeny of the nemertean subclass Palaeonemertea (Anopla, Nemertea).Crossref | GoogleScholarGoogle Scholar |

Sundberg, P., Chernyshev, A. V., Kajihara, H., Kånneby, T., and Strand, M. (2009). Character-matrix based descriptions of two new nemertean (Nemertea) species. Zoological Journal of the Linnean Society 157, 264–294.
Character-matrix based descriptions of two new nemertean (Nemertea) species.Crossref | GoogleScholarGoogle Scholar |

Sundberg, P., Kvist, S., and Strand, M. (2016). Evaluating the utility of single-locus DNA barcoding for the identification of ribbon worms (phylum Nemertea). PLoS One 11, e0155541.
Evaluating the utility of single-locus DNA barcoding for the identification of ribbon worms (phylum Nemertea).Crossref | GoogleScholarGoogle Scholar | 27171471PubMed |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |

Temereva, E. N., and Malakhov, V. V. (2009). Microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri Pixell, 1912 (Lophophorata: Phoronida). Russian Journal of Marine Biology 35, 388–404.
Microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri Pixell, 1912 (Lophophorata: Phoronida).Crossref | GoogleScholarGoogle Scholar |

Thollesson, M., and Norenburg, J. L. (2003). Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proceedings of the Royal Society of London – B. Biological Sciences 270, 407–415.
Ribbon worm relationships: a phylogeny of the phylum Nemertea.Crossref | GoogleScholarGoogle Scholar |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

von Döhren, J. (2016). First record on the development of the larva of the basally branching nemertean species Carinina ochracea (Palaeonemertea). Helgoland Marine Research 70, 13.
First record on the development of the larva of the basally branching nemertean species Carinina ochracea (Palaeonemertea).Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 11975347PubMed |