Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The pattern of surfactant cholesterol during vertebrate evolution and development: does ontogeny recapitulate phylogeny?

Sandra Orgeig A D , Christopher B. Daniels A , Sonya D. Johnston A B and Lucy C. Sullivan A C
+ Author Affiliations
- Author Affiliations

A Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

B Present address: Lung Function Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.

C Present address: Department of Microbiology and Immunology, University of Melbourne, Melbourne, Vic. 3010, Australia.

D To whom correspondence should be addressed. email: sandra.orgeig@adelaide.edu.au

Reproduction, Fertility and Development 15(1) 55-73 https://doi.org/10.1071/RD02087
Submitted: 21 October 2002  Accepted: 21 January 2003   Published: 21 January 2003

Abstract

Pulmonary surfactant is a complex mixture of phospholipids (PLs), neutral lipids and proteins that lines the inner surface of the lung. Here it modulates surface tension, thereby increasing lung compliance and preventing the transudation of fluid. In humans, pulmonary surfactant is comprised of approximately 80% PLs, 12% neutral lipids and 8% protein. In most eutherian (i.e. placental) mammals, cholesterol (Chol) comprises approximately 8–10% by weight or 14–20 mol% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. The lipid composition is highly conserved within the vertebrates, except that surfactant of teleost fish is dominated by cholesterol, whereas tetrapod pulmonary surfactant contains a high proportion of disaturated phospholipids (DSPs). The primitive Australian dipnoan lungfish Neoceratodus forsterii demonstrates a ‘fish-type’ surfactant profile, whereas the other derived dipnoans demonstrate a surfactant profile similar to that of tetrapods. Homology of the surfactant proteins within the vertebrates points to a single evolutionary origin for the system and indicates that fish surfactant is a ‘protosurfactant’. Among the terrestrial tetrapods, the relative proportions of DSPs and cholesterol vary in response to lung structure, habitat and body temperature (T b), but not in relation to phylogeny. The cholesterol content of surfactant is elevated in species with simple saccular lungs or in aquatic species or in species with low T b. The DSP content is highest in complex lungs, particularly of aquatic species or species with high T b. Cholesterol is controlled separately from the PL component in surfactant. For example, in heterothermic mammals (i.e. mammals that vary their body temperature), the relative amount of cholesterol increases in cold animals. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently.

In mammals, the pulmonary surfactant system develops towards the end of gestation and is characterized by an increase in the saturation of PLs in lung washings and the appearance of surfactant proteins in amniotic fluid. In general, the pattern of surfactant development is highly conserved among the amniotes. This conservation of process is demonstrated by an increase in the amount and saturation of the surfactant PLs in the final stages (>75%) of development. Although the ratios of surfactant components (Chol, PL and DSP) are remarkably similar at the time of hatching/birth, the relative timing of the maturation of the lipid profiles differs dramatically between species. The uniformity of composition between species, despite differences in lung morphology, birthing strategy and relationship to each other, implies that the ratios are critical for the onset of pulmonary ventilation. The differences in the timing, on the other hand, appear to relate primarily to birthing strategy and the onset of air breathing. As the amount of cholesterol relative to the phospholipids is highly elevated in immature lungs, the pattern of cholesterol during development and evolution represents an example of ontogeny recapitulating phylogeny. The fact that cholesterol is an important component of respiratory structures that are primitive, when they are not in use or developing in an embryo, demonstrates that this substance has important and exciting roles in surfactant. These roles still remain to be explored.


Acknowledgments

This work was funded by an Australian Research Council (ARC) Fellowship to S. Orgeig and an ARC Grant to C. Daniels.


References

Allegra, L. , Bossi, R. , and Braga, P. (1985). Influence of surfactant on mucociliary transport Eur. J. Respir. Dis. 142, 71–6.


Bachofen, H. , Hildebrandt, J. , and Bachofen, M. (1970). Pressure–volume curves of air- and liquid-filled excised lungs—surface tension in situ J. Appl. Physiol. 29, 422–31.
PubMed |

Bachofen, H. , Schürch, S. , Urbinelli, M. , and Weibel, E. R. (1987). Relations among alveolar surface tension, surface area, volume and recoil pressure J. Appl. Physiol. 62, 1878–87.
PubMed |

Baritussio, A. G. , Carraro, R. , Bellina, L. , Rossi, A. , Bruni, R. , Pettenazzo, A. , and Enzi, A. G. (1985). Turnover of phospholipids isolated from fractions of lung lavage fluid J. Appl. Physiol. 59, 1055–60.
PubMed |

Bastacky, J. , Lee, C. Y. C. , Goerke, J. , Koushafar, H. , Yager, D. , Kenaga, L. , Speed, T. P. , Chen, Y. , and Clements, J. A. (1995). Alveolar lining layer is thin and continuous: low temperature scanning electron microscopy of rat lung J. Appl. Physiol. 79, 1615–28.
PubMed |

Benson, B. J. , Kitterman, J. A. , Clements, J. A. , Mescher, E. J. , and Tooley, W. H. (1983). Changes in phospholipid composition of lung surfactant during development in the fetal lamb Biochim. Biophys. Acta. 753, 83–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Burnstock, G. , and Wood, M. J. (1967). Innervation of the lungs of the sleepy lizard (Trachysaurus rugosus)-II. Physiology and pharmacology Comp. Biochem. Physiol. 22, 815–31.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Challis, J. R. , and Brooks, A. N. (1989). Maturation and activation of hypothalamic–pituitary adrenal function in fetal sheep Endocr. Rev. 10, 182–204.
PubMed |

Chander, A. , and Fisher, A. B. (1990). Regulation of lung surfactant secretion Am. J. Physiol. 258, L241–53.
PubMed |

Clements, J. A. , Nellenbogen, J. , and Trahan, H. J. (1970). Pulmonary surfactant and evolution of lungs Science 169, 603–4.
PubMed |

Codd, J. R., Daniels, C. B. and  Orgeig, S. (2000). Thermal cycling of the pulmonary surfactant system in small heterothermic mammals. In Life in the Cold. Eleventh International Hibernation Symposium (Eds. G. Heldmeie and M. Klingenspor)  pp. 187–97. (Springer-Verlag: Berlin.)

Codd, J. R. , Slocombe, N. C. , Daniels, C. B. , Wood, P. G. , and Orgeig, S. (2000b). Periodic fluctuations in the pulmonary surfactant system in Gould’s wattled bat (Chalinolobus gouldii) Physiol. Biochem. Zool. 73, 605–12.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Crapo, J. D. (1993). New concepts in the formation of pulmonary edema Am. Rev. Respir. Dis. 147, 790–2.
PubMed |

Crittenden, D. J. , Alexander, L. A. , and Beckman, D. L. (1994). Sympathetic nerve influence on alveolar type II cell ultrastructure Life Sci. 55, 1229–35.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Crouch, E. C. (1998). Structure, biologic properties, and expression of surfactant protein D (SP-D) Biochim. Biophys. Acta 1408, 278–89.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Daniels, C. B. , and Skinner, C. H. (1994). The composition and function of surface active lipids in the goldfish swim bladder Physiol. Zool. 67, 1230–56.


Daniels, C. B. , Barr, H. A. , Power, J. H. T. , and Nicholas, T. E. (1990). Body temperature alters the lipid composition of pulmonary surfactant in the lizard Ctenophorus nuchalis.  Exp. Lung Res. 16, 435–49.
PubMed |

Daniels, C. B. , Orgeig, S. , Wilsen, J. , and Nicholas, T. E. (1994). Pulmonary-type surfactants in the lungs of terrestrial and aquatic amphibians Respir. Physiol. 95, 249–58.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Daniels, C. B. , Orgeig, S. , and Smits, A. W. (1995a). The composition and function of reptilian pulmonary surfactant Respir. Physiol. 102, 121–35.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Daniels, C. B. , Orgeig, S. , and Smits, A. W. (1995b). Invited perspective: the evolution of the vertebrate pulmonary surfactant system Physiol. Zool. 68, 539–66.


Daniels, C. B. , Smits, A. W. , and Orgeig, S. (1995c). Pulmonary surfactant lipids in the faveolar and saccular lung regions of snakes Physiol. Zool. 68, 812–30.


Daniels, C. B. , Orgeig, S. , Smits, A. W. , and Miller, J. D. (1996). The influence of temperature, phylogeny, and lung structure on the lipid composition of reptilian pulmonary surfactant Exp. Lung Res. 22, 267–81.
PubMed |

Daniels, C. B. , Lopatko, O. V. , and Orgeig, S. (1998a). Evolution of surface activity related functions of vertebrate pulmonary surfactant Clin. Exp. Pharmacol. Physiol. 25, 716–21.
PubMed |

Daniels, C. B. , Orgeig, S. , Wood, P. G. , Sullivan, L. C. , Lopatko, O. V. , and Smits, A. W. (1998b). The changing state of surfactant lipids: new insights from ancient animals Am. Zool. 38, 305–20.


Doyle, I. R. , Jones, M. E. , Barr, H. A. , Orgeig, S. , Crockett, A. J. , McDonald, C. F. , and Nicholas, T. E. (1994). Composition of human pulmonary surfactant varies with exercise and level of fitness Am. J. Respir. Crit. Care Med. 149, 1619–27.
PubMed |

Dulkerian, S. J. , Gonzales, L. W. , Ning, Y. , and Ballard, P. L. (1996). Regulation of surfactant protein D in human fetal lung Am. J. Respir. Cell Mol. Biol. 15, 781–6.
PubMed |

Egberts, J. , Fontijne, P. , and Van Der Weijen, G. C. (1981). Premature changes in surface activity in lung fluid of fetal lambs Eur. J. Obstet. Gynecol. Reprod. Biol. 12, 59–67.
PubMed |

Engstrom, P. C. , Holm, B. A. , and Matalon, S. (1989). Surfactant replacement attenuates the increase in alveolar permeability in hyperoxia J. Appl. Physiol. 67, 688–93.
PubMed |

Enhorning, G. (1977). Photography of peripheral pulmonary airway expansion as affected by surfactant J. Appl. Physiol. 42, 976–9.
PubMed |

Evans, R. W. , Williams, M. A. , and Tinoco, J. (1980). Surface viscosities of phospholipids alone and with cholesterol in monolayers at the air–water interface Lipids 15, 521–33.


Fergusson, B. , and Bradshaw, S. D. (1991). Plasma arginine vasotocin, progesterone and luteal development during pregnancy in the viviparous lizard Tiliqua rugosa Gen. Comp. Endocrinol. 82, 140–51.
PubMed |

Fleming, B. D. , and Keough, K. M. W. (1988). Surface respreading after collapse of monolayers containing lipids of pulmonary surfactant Chem. Phys. Lipids 49, 81–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Frank, L. , and Massaro, D. (1980). Oxygen toxicity Am. J. Med. 69, 117–26.
PubMed |

Fujiwara, T. , Adams, F. H. , Sipos, S. , and El-Salawy, A. (1968). ‘Alveolar’ and whole lung phospholipids of the developing fetal lamb lung Am. J. Physiol. 215, 375–82.
PubMed |

Geiser, F. , and Baudinette, R. V. (1987). Seasonality of torpor and thermoregulation in three dasyurid marsupials J. Comp. Physiol. B 157, 335–44.


Gilliard, N. , Heldt, G. P. , Loredo, J. , Gasser, H. , Redl, H. , Merritt, T. A. , and Spragg, R. G. (1994). Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties J. Clin. Invest. 93, 2608–15.
PubMed |

Gluck, L. , Sribney, M. , and Kulovich, M. V. (1967). The biochemical development of surface activity in mammalian lung. II. The biosynthesis of phospholipids in the lung of the developing rabbit fetus and newborn Pediatr. Res. 1, 247–65.
PubMed |

Goerke, J. (1998). Pulmonary surfactant: functions and molecular composition Biochim. Biophys. Acta 1408, 79–89.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Goldstein, B. D. (1978). The pulmonary and extrapulmonary effects of ozone. In Oxygen Free Radicals and Tissue Damage (Ed D. W. Fitzsimons)  pp. 239–77. (Excerpta Medica: London)

Griese, M. , Gobran, L. I. , and Rooney, S. A. (1992). Ontogeny of surfactant secretion in type II pneumocytes from fetal, newborn and adult rats Am. J. Physiol. 262, L337–43.
PubMed |

Guthmann, F. , Harrach-Ruprecht, B. , Looman, A. C. , Stevens, P. A. , Robenek, H. , and Rüstow, B. (1997). Interaction of lipoproteins with type II pneumocytes in vitro: morphological studies, uptake kinetics and secretion rate of cholesterol Eur. J. Cell Biol. 74, 197–207.
PubMed |

Guyton, A. C., Moffat, D. S. and  Adair, T. H. (1984). Role of alveolar surface tension in transepithelial movement of fluid In Pulmonary Surfactant (Eds. B. Robertson, L. M. G. Van Golde and J. J. Batenburg)  pp. 171–85. (Elsevier Science Publishers: Amsterdam.)

Haagsman, H. P. , and Diemel, R. V. (2001). Surfactant-associated proteins: functions and structural variation Comp. Biochem. Physiol. A 129, 91–108.
Crossref | GoogleScholarGoogle Scholar |

Hadley, N. F. (1985). The Adaptive Role of Lipids in Biological Systems (J. Wiley and Sons: New York.)

Hislop, A. and  Reid, L. M. (1977). Formation of the pulmonary vasculature. In Development of the Lung (Ed W. A. Hodson)  pp. 37–81. (Marcel Dekker, Inc.: New York.)

Hylka, V. W. , and Doneen, B. A. (1982). Lung phospholipids in the embryonic and immature chicken: changes in lipid composition and biosynthesis during maturation of the surfactant system J. Exp. Biol. 220, 71–80.


Johansson, J. , and Curstedt, T. (1997). Molecular structures and interactions of pulmonary surfactant components Eur. J. Biochem. 244, 675–93.
PubMed |

Johnston, S. D. , and Daniels, C. B. (2001). Development of the pulmonary surfactant system in non-mammalian amniotes Comp. Biochem. Physiol. A 129, 49–63.
Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D. , Orgeig, S. , Lopatko, O. V. , and Daniels, C. B. (2000). Development of the pulmonary surfactant system in two oviparous vertebrates Am. J. Physiol. 278, R486–93.


Johnston, S. D. , Daniels, C. B. , and Booth, D. T. (2001). Development of the pulmonary surfactant system in the green sea turtle, Chelonia mydas. Respir. Physiol. 126, 75–84.
Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D. , Daniels, C. B. , Cenzato, D. , Whitsett, J. A. , and Orgeig, S. (2002a). The pulmonary surfactant system matures upon pipping in the freshwater turtle, Chelydra serpentina.  J. Exp. Biol. 205, 415–25.
PubMed |

Johnston, S. D. , Starrs, A. P. , Daniels, C. B. , and Orgeig, S. (2002b). Ontogeny of the pulmonary surfactant and antioxidant enzyme systems in the viviparous lizard, Tiliqua rugosa  Physiol. Biochem. Zool. 75, 260–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kakuta, Y. , Sasaki, H. , and Takishima, T. (1991). Effect of artificial surfactant on ciliary beat frequency in guinea pig trachea Respir. Physiol. 83, 313–22.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Katyal, S. L. , Estes, L. W. , and Lombardi, B. (1977). Method for the isolation of surfactant from homogenates and lavages of adult, newborn and fetal rats Lab. Invest. 36, 585–92.
PubMed |

Keough, K. M. , Giffin, B. , and Matthews, P. L. (1989). Phosphatidylcholine–cholesterol interactions: bilayers of heteroacid lipids containing linoleate lose calorimetric transitions at low cholesterol concentration Biochim. Biophys. Acta 983, 51–5.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Khoor, A. , Stahlman, M. T. , Gray, M. E. , and Whitsett, J. A. (1994). Temporal–spatial distribution of SP-B and SP-C proteins and mRNAs in developing respiratory epithelium of human lung J. Histochem. Cytochem. 42, 1187–99.
PubMed |

Kilburn, K. H. (1969). Alveolar clearance of particles: a bullfrog lung model Arch. Environ. Health 18, 556–63.
PubMed |

King, R. J. and  Clements, J. A. (1985). Lipid synthesis and surfactant turnover in the lungs. In Handbook of Physiology (Eds. A. P. Fishman, A. B. Fisher and S. R. Geiger)  pp. 309–36. (American Physiological Society: Bethesda.)

Kohri, T. , Sakai, K. , Mizunuma, T. , and Kishino, Y. (1996). Levels of pulmonary surfactant protein A in fetal lung and amniotic fluid from protein-malnourished pregnant rats J. Nutr. Sci. Vitaminol. 42, 209–18.
PubMed |

Kulovich, M. V. , Hallman, M. B. , and Gluck, L. (1979). The lung profile. I. Normal pregnancy Am. J. Obstet. Gynecol. 135, 57–63.
PubMed |

Ladbrooke, B. D. , Williams, R. M. , and Chapman, D. (1968). Studies on lecithin–cholesterol–water interactions by differential scanning calorimetry and X-ray diffraction Biochim. Biophys. Acta 150, 333–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Langman, C. , Orgeig, S. , and Daniels, C. B. (1996). Alterations in composition and function of surfactant associated with torpor in Sminthopsis crassicaudata  Am. J. Physiol. 271, R437–45.
PubMed |

Lawson, E. E. , Birdwell, R. L. , Huang, P. S. , and Taesch, W. H. (1979). Augmentation of pulmonary surfactant secretion by lung expansion at birth Pediatr. Res. 73, 611–14.


Liley, H. G. , Hawgood, S. , Wellenstein, G. A. , Benson, B. , White, R. T. , and Ballard, P. L. (1987). Surfactant protein of molecular weight 28 000–36 000 in cultured human fetal lung: cellular localization and effect of dexamethasone Mol. Endocrinol. 1, 205–15.
PubMed |

Liu, M. , Wang, L. , Li, E. , and Enhorning, G. (1991). Pulmonary surfactant will secure free airflow through a narrow tube J. Appl. Physiol. 71, 742–8.
PubMed |

Lombardi, J. (1998). Comparative Vertebrate Reproduction (Kluwer Academic Publishers: Boston.)

Lopatko, O. V. , Orgeig, S. , Palmer, D. , Schürch, S. , and Daniels, C. B. (1999). Alterations in pulmonary surfactant after rapid arousal from torpor in the marsupial Sminthopsis crassicaudata  J. Appl. Physiol. 86, 1959–70.
PubMed |

Maina, J. N. , and King, A. S. (1984). Correlations between structure and function in the design of the bat lung: a morphometric study J. Exp. Biol. 111, 43–61.
PubMed |

Maina, J. N. , King, A. S. , and King, D. Z. (1982). A morphometric analysis of the lung of a species of bat Respir. Physiol. 50, 1–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marino, P. A. , and Rooney, S. A. (1981). Effect of labor on surfactant secretion in newborn rabbit lung slices Biochim. Biophys. Acta 664, 386–96.


Massaro, D. , Clerch, L. , and Massaro, G. D. (1982). Surfactant secretion: evidence that cholinergic stimulation of secretion is indirect Am. J. Physiol. 243, C39–45.
PubMed |

McCormack, F. X. (1998). Structure, processing and properties of surfactant protein A Biochim. Biophys. Acta 1408, 109–31.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mendelson, C. R. , and Boggaram, V. (1991). Hormonal control of the surfactant system in fetal lung Annu. Rev. Physiol. 53, 415–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Metcalfe, I. L. , Pototschnik, R. , Burgoyne, R. , and Enhorning, G. (1982). Lung expansion and survival in rabbit neonates treated with surfactant extract J. Appl. Physiol. 53, 838–43.
PubMed |

Morrow, M. R. , Davis, P. J. , Jackman, C. S. , and Keough, K. M. W. (1996). Thermal history alters cholesterol effect on transition of 1-palmitoyl-2-linoleoyl phosphatidylcholine Biophys. J. 71, 3207–14.
PubMed |

Nichols, K. V. , Floros, J. , Dynia, D. W. , Veletza, S. V. , Wilson, C. M. , and Gross, I. (1990). Regulation of surfactant protein A mRNA by hormones and butyrate in cultured fetal lung Am. J. Physiol. 259, L488–95.
PubMed |

Notter, R. H. , Tabak, S. A. , Holcomb, S. , and Mavis, R. D. (1980). Postcollapse dynamic surface pressure relaxation in binary surface films containing dipalmitoylphosphatidylcholine J. Colloid Interface Sci. 74, 370–7.


Odom, M. J. , Snyder, J. M. , and Mendelson, C. R. (1987). Adenosine 3′,5′-monophosphate analogs and beta-adrenergic agonists induce the synthesis of the major surfactant apoprotein in human fetal lung in vitro Endocrinology 121, 1155–63.
PubMed |

Ogasawara, Y. , Kuroki, Y. , Shiratoari, M. , Shimizu, H. , Miyamura, K. , and Akino, T. (1991). Ontogeny of surfactant apoprotein D, SP-D, in the rat lung Biochim. Biophys. Acta 1083, 252–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oguchi, A. , Mita, M. , Ohkawa, M. , Kawamura, K. , and Kikuyama, S. (1994). Analysis of lung surfactant in the metamorphosing bullfrog (Rana catesbeiana) J. Exp. Zool. 269, 515–21.
PubMed |

Oosterlaken-Dijksterhuis, M. A. , van Eijk, M. , van Buel, B. L. , van Golde, L. M. , and Haagsman, H. P. (1991). Surfactant protein composition of lamellar bodies isolated from rat lung Biochem. J. 274, 115–19.
PubMed |

Orgeig, S. , and Daniels, C. B. (1995). The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi) Am. J. Respir. Cell Mol. Biol. 13, 161–6.
PubMed |

Orgeig, S. , and Daniels, C. B. (2001). The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies Comp. Biochem. Physiol. A 129, 75–89.
Crossref | GoogleScholarGoogle Scholar |

Orgeig, S. , Daniels, C. B. , and Smits, A. W. (1994). The composition and function of the pulmonary surfactant system during metamorphosis in the tiger salamander Ambystoma tigrinum.  J. Comp. Physiol. B 164, 337–42.
PubMed |

Orgeig, S. , Barr, H. A. , and Nicholas, T. E. (1995). Effect of hyper-pnea on the cholesterol to disaturated phospholipid ratio in alveolar surfactant of rats Exp. Lung Res. 21, 157–74.
PubMed |

Orgeig, S. , Smits, A. W. , Daniels, C. B. , and Herman, J. K. (1997). Surfactant regulates pulmonary fluid balance in reptiles Am. J. Physiol. 273, R2013–21.
PubMed |

Orgeig, S., Daniels, C. B. and  Sullivan, L. C. (). The development of the pulmonary surfactant system. In The Lung: Development, Aging and the Environment (Eds. R. Harding, K. Pinkerton and C. Plopper) (Academic Press: London.) In press

Oulton, M. , Fraser, M. , Dolphin, M. , Yoon, R. , and Faulkner, G. (1986). Quantification of surfactant pool sizes in rabbit lung during perinatal development J. Lipid Res. 27, 602–12.
PubMed |

Padbury, J. F. , Robertman, B. , Oddie, T. H. , Hobel, C. J. , and Fisher, D. A. (1982). Fetal catecholamines in response to labor and delivery Obstet. Gynecol. 60, 607–11.
PubMed |

Palombo, J. D. , Lydon, E. E. , Chen, P. , Bistrian, B. R. , and Forse, R. A. (1994). Fatty acid composition of lung, macrophage and surfactant phospholipids after short-term enteral feeding with n-3 lipids Lipids 29, 643–9.
PubMed |

Pikaar, J. C. , Voorhout, W. F. , van Golde, L. M. G. , Verhoef, J. , van Strijp, J. A. G. , and Van Iwaarden, J. F. (1995). Opsonic activities of surfactant proteins A and D in phagocytosis of gram-negative bacteria by alveolar macrophages J. Infect. Dis. 172, 481–9.
PubMed |

Pison, U. , Max, M. , Neuendank, A. , Weibbach, S. , and Pietschmann, S. (1994). Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system Eur. J. Clin. Invest. 24, 586–99.
PubMed |

Pitkänen, O. and  O’Brodovich, H. (1999). Development of lung epithelial ion transport: implications for neonatal lung disease. In Lung Development (Eds. C. Gaultier, J. R. Bourbon and M. Post)  pp. 255–81. (Oxford University Press: Oxford.)

Possmayer,, F. (1990). The role of surfactant-associated proteins Am. Rev. Respir. Dis. 142, 749–52.
PubMed |

Possmayer, F. (1997). Physicochemical aspects of pulmonary surfactant. In Fetal and Neonatal Physiology (Eds. R. A. Polin and W. W. Fox)  pp. 1259–1275. (W. B. Saunders Company: Philadelphia.)

Possmayer, F. and  Yu, S. (1990). Role of the low molecular weight proteins in pulmonary surfactant. In Progress in Respiratory Research. Basic Research on Lung Surfactant (Eds. P. von Wichert and B. Muller)  pp. 54–63. (Karger: Basel.)

Post, M. and  Smith, B. T. (1992). Hormonal control of surfactant metabolism. In Pulmonary Surfactant: From Molecular Biology to Clinical Practice (Eds. B. Robertson, L. M. G. Van Golde and J. J. Batenburg)  pp. 379–424. (Elsevier Science Publishers B. V.: Amsterdam)

Presti, F. T. (1985). The role of cholesterol in regulating membrane fluidity In Membrane Fluidity in Biology. Vol. 4. Cellular Aspects (Eds. R. C. Aloia and J. M. Boggs)  pp. 97–141. (Academic Press: Orlando.)

Presti, F. T. , Pace, R. J. , and Chan, S. I. (1982). Cholesterol phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains Biochemistry 21, 3831–5.
PubMed |

Rooney, S. A. , Wai-lee, T. S. , Gobran, L. , and Motoyama, E. K. (1976). Phospholipid content, composition and biosynthesis during fetal lung development in the rabbit Biochim. Biophys. Acta 413, 447–58.


Rubio, S. , Chailley-Heu, B. , Ducroc, R. , and Bourbon, J. R. (1996). Antibody against pulmonary surfactant protein A recognizes proteins in intestine and swim bladder of the freshwater fish, Carp Biochem. Biophys. Res. Commun. 225, 901–6.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schürch,, S. (1982). Surface tension at low lung volumes: dependence on time and alveolar size Respir. Physiol. 48, 339–55.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schürch, S. , Bachofen, H. , Goerke, J. , and Possmayer, F. (1989). A captive bubble method reproduces the in situ behaviour of lung surfactant monolayers J. Appl. Physiol. 67, 2389–96.
PubMed |

Schürch, S. , Bachofen, H. , Goerke, J. , and Green, F. (1992). Surface properties of rat pulmonary surfactant studied with the captive bubble method: adsorption, hysteresis, stability Biochim. Biophys. Acta 1103, 127–36.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Seymour, R. S. (1984). Patterns of lung aeration in the perinatal period of domestic fowl and brush turkey. In Respiration and Metabolism of Embryonic Vertebrates (Ed R. S. Seymour)  pp. 319–32. (Dr W. Junk Publishers: Dordrecht.)

Slocombe, N. C. , Codd, J. R. , Wood, P. G. , Orgeig, S. , and Daniels, C. B. (2000). The effect of alterations in activity and body temperature on the pulmonary surfactant system in the lesser long-eared bat Nyctophilus geoffroyi J. Exp. Biol. 203, 2429–35.
PubMed |

Smits, A. W. , Orgeig, S. , and Daniels, C. B. (1994). Surfactant composition and function in lungs of air-breathing fishes Am. J. Physiol. 266, R1309–13.
PubMed |

Sullivan, L. C. , and Orgeig, S. (2001). Dexamethasone and epinephrine stimulate surfactant secretion in type II cells of embryonic chickens Am. J. Physiol. 281, R770–7.


Sullivan, L. C. , Daniels, C. B. , Phillips, I. D. , Orgeig, S. , and Whitsett, J. A. (1998). Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant J. Mol. Evol. 46, 131–8.
PubMed |

Sullivan, L. C. , Orgeig, S. , and Daniels, C. B. (2002). The control of the development of the pulmonary surfactant system in the saltwater crocodile, Crocodylus porosus Am. J. Physiol. 283, R1164–76.


Suzuki, Y. , Tabata, R. , and Okawa, K. (1978). Studies of factors influencing lung stability: biochemical changes of pulmonary surfactant and morphological changes of terminal air spaces in the developing rat J. Exp. Med. 48, 345–53.


Tan, R. C. , Ikegami, M. , Jobe, A. H. , Yao, L. Y. , Possmayer, F. , and Ballard, P. L. (1999). Developmental and glucocorticoid regulation of surfactant protein mRNAs in preterm lambs Am. J. Physiol. 277, L1142–8.
PubMed |

Taylor, R. N., Lebovic, D. I. and  Martin-Cadieux, M. C. (2001). The endocrinology of pregnancy. In Basic and Clinical Endocrinology (Eds. F. S. Greenspan and D. G. Gardner)  pp. 575–602. (Lange Medical Books/McGraw-Hill: New York.)

Tenner, A. J. , Robinson, S. L. , Borchelt, J. , and Wright, J. R. (1989). Human pulmonary surfactant protein (SP-A), a protein structurally homologous to Clq, can enhance FcR- and CR1-mediated phagocytosis J. Biol. Chem. 64, 13 923–8.


Thompson, K. E. (1992). Macroevolution: the morphological problem Am. Zool. 32, 106–12.


Torday, J. S. , and Nielson, H. C. (1981). Surfactant phospholipid ontogeny in fetal rabbit lung lavage and amniotic fluid Biol. Neonate 39, 266–71.
PubMed |

Torday, J. S. , Sanchez-Esteban, J. , and Rubin, L. P. (1998a). Paracrine mediators of mechanotransduction in lung development Am. J. Med. Sci. 316, 205–8.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Torday, J. S. , Sun, H. , and Qin, J. (1998b). Prostaglandin E2 integrates the effects of fluid distension and glucocorticoid on lung maturation Am. J. Physiol. 274, L106–11.
PubMed |

Veldhuizen, R. A. W. , Nag, K. , Orgeig, S. , and Possmayer, F. (1998). The role of lipids in pulmonary surfactant Biochim. Biophys. Acta 1408, 90–108.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Viscardi, R. M. (1995). Role of fatty acids in lung development J. Nutr. 125, 1645S–51S.
PubMed |

Visschedijk, A. H. J. (1968). The air space and embryonic respiration Br. Poult. Sci. 9, 173–210.
PubMed |

Voyno-Yasenetskaya, T. A. , Dobbs, L. G. , Erickson, S. K. , and Hamilton, R. L. (1993). Low density lipoprotein- and high density lipoprotein-mediated signal transduction and exocytosis in alveolar type II cells Proc. Natl Acad. Sci. USA 90, 4256–60.
PubMed |

Warburton, D. , Parton, L. , Buckley, S. , Cosico, L. , and Saluna, T. (1987). Beta-receptors and surface active material flux in fetal lamb lung: female advantage J. Appl. Physiol. 63, 828–33.
PubMed |

Weaver, T. E. (1998). Synthesis, processsing and secretion of surfactant proteins B and C Biochim. Biophys. Acta 1408, 173–9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weaver, T. E. , and Conkright, J. J. (2001). Functions of surfactant proteins B and C Annu. Rev. Physiol. 63, 555–78.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wittmann, J. , and Prechtl, J. (1991). Respiratory function of catecholamines during the late period of avian development Respir. Physiol. 83, 375–86.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wittmann, J. , Steib, A. , Liebich, H. G. , and Hammel, W. (1987). Lung development under the influence of thiourea and l-thyroxine. Retarding and toxic effects of thiourea Res. Commun.Chem. Pathol. Pharmacol. 58, 199–214.
PubMed |

Wood, P. G. , Daniels, C. B. , and Orgeig, S. (1995). Functional significance and control of release of pulmonary surfactant in the lizard lung Am. J. Physiol. 269, R838–47.
PubMed |

Wood, P. G. , Andrew, L. K. , Daniels, C. B. , Orgeig, S. , and Roberts, C. T. (1997). Autonomic control of the pulmonary surfactant system and lung compliance in the lizard Physiol. Zool. 70, 444–55.
PubMed |

Wood, P. G. , Lopatko, O. V. , Orgeig, S. , Codd, J. R. , and Daniels, C. B. (1999). Control of pulmonary surfactant secretion from type II pneumocytes isolated from the lizard, Pogona vitticeps. Am. J. Physiol. 277, R1705–11.


Wood, P. G. , Lopatko, O. V. , Orgeig, S. , Joss, J. M. , Smits, A. W. , and Daniels, C. B. (2000). Control of pulmonary surfactant secretion: an evolutionary perspective Am. J. Physiol. 278, R611–19.


Wright, J. R. , Wager, R. E. , Hawgood, S. , Dobbs, L. G. , and Clements, J. A. (1987). Surfactant apoprotein Mr = 26 000–36 000 enhances uptake of liposomes by type II cells J. Biol. Chem. 262, 2888–94.
PubMed |

Yu, S. H. , and Possmayer, F. (1996). Effect of pulmonary surfactant protein A and neutral lipid on accretion and organization of dipalmitoylphosphatidylcholine in surface films J. Lipid Res. 37, 1278–88.
PubMed |

Yu, S. H. , and Possmayer, F. (1998). Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface J. Lipid Res. 39, 555–68.
PubMed |

Zeng, X. , Yutzey, K. E. , and Whitsett, J. A. (1998). Thyroid transcription factor-1, hepatocyte nuclear factor-3β and surfactant protein A and B in the developing chick lung J. Anat. 193, 399–408.
Crossref | GoogleScholarGoogle Scholar | PubMed |