Research
Metabolic Switches and Adaptations Deduced from the Proteomes of Streptomyces coelicolor Wild Type and phoP Mutant Grown in Batch Culture*

https://doi.org/10.1074/mcp.M111.013797Get rights and content
Under a Creative Commons license
open access

Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.

Cited by (0)

*

This work was funded by Biotechnology and Biological Sciences Research Council Grant BB/F003439/1, ERA-NET SysMO Project GEN2006-27745-E/SYS Grant P-UK-01-11-3i, and Research Council of Norway Project 181840/I30. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This article contains supplemental material.

2

J. Moore, R. Legaie, V. Armendarez, E. Laing, G. Chandra, M. Bibb, and D. A. Hodgson, manuscript in preparation.

3

G. Sawers personal communication.