Research
Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome*

https://doi.org/10.1074/mcp.RA117.000020Get rights and content
Under a Creative Commons license
open access

Exercise is extremely beneficial to whole body health reducing the risk of a number of chronic human diseases. Some of these physiological benefits appear to be mediated via the secretion of peptide/protein hormones into the blood stream. The plasma peptidome contains the entire complement of low molecular weight endogenous peptides derived from secretion, protease activity and PTMs, and is a rich source of hormones. In the current study we have quantified the effects of intense exercise on the plasma peptidome to identify novel exercise regulated secretory factors in humans. We developed an optimized 2D-LC-MS/MS method and used multiple fragmentation methods including HCD and EThcD to analyze endogenous peptides. This resulted in quantification of 5,548 unique peptides during a time course of exercise and recovery. The plasma peptidome underwent dynamic and large changes during exercise on a time-scale of minutes with many rapidly reversible following exercise cessation. Among acutely regulated peptides, many were known hormones including insulin, glucagon, ghrelin, bradykinin, cholecystokinin and secretogranins validating the method. Prediction of bioactive peptides regulated with exercise identified C-terminal peptides from Transgelins, which were increased in plasma during exercise. In vitro experiments using synthetic peptides identified a role for transgelin peptides on the regulation of cell-cycle, extracellular matrix remodeling and cell migration. We investigated the effects of exercise on the regulation of PTMs and proteolytic processing by building a site-specific network of protease/substrate activity. Collectively, our deep peptidomic analysis of plasma revealed that exercise rapidly modulates the circulation of hundreds of bioactive peptides through a network of proteases and PTMs. These findings illustrate that peptidomics is an ideal method for quantifying changes in circulating factors on a global scale in response to physiological perturbations such as exercise. This will likely be a key method for pinpointing exercise regulated factors that generate health benefits.

Cited by (0)

Author contributions: B.L.P. and D.E.J. designed research; B.L.P., J.G.B., D.C., T.A.G., B.K., J.W., and E.A.R. performed research; B.L.P. and J.G.B. analyzed data; B.L.P., J.G.B., J.W., E.A.R., and D.E.J. wrote the paper; D.C. and R.J.P. contributed new reagents/analytic tools.

*

This work was supported by a National Health and Medical Research Council (NHMRC) project grant (D.E.J and B.L.P) and by the Danish Research Council for Independent Research/Medicine (E.A.R.). B.L.P is a recipient of an NHMRC Early Career Fellowship. D.E.J. is a recipient of an NHRMC Senior Research Fellowship. The contents of the published material are solely the responsibility of the individual authors and do not reflect the view of NHMRC.

This article contains supplemental material.