Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-14T20:49:34.124Z Has data issue: false hasContentIssue false

Studies on the absorption of zinc by rat intestine

Published online by Cambridge University Press:  25 February 2008

N. T. Davies
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A technique is described for the measurement of the extent of 65Zn absorption by different regions of the intestine in the intact rat. Using this technique it was shown that the duodenum contributed 60%, the ileum 30% and the jejunum 10% to the over-all absorption of 65Zn. Negligible absorption of 65Zn occurred from the caecum and colon.

2. Using ligated loops of rat duodenum in situ, 65Zn absorption was shown to be rapid, with 1% of a 5 μg dose being transferred to the carcase within 1 min of intraluminal dosing.

3. When 65Zn was injected into ligated loops in a dose range of 1–200 μg Zn/ml the rate of absorpion was linear with respect to time over the first 15 min. The rates of 65Zn absorption v. dose of 65Zn exhibited saturation kinetics indicating absorpion by a ‘carrier’ or enzyme-mediated process.

4. The binding of 65Zn to loop tissue showed biphasic kinetics which suggested that at low intraluminal concentrations of Zn (1–50 μg Zn/ml) binding was to specific sites whereas, at higher concentrations (50–200 μg Zn/ml), non-specific binding occurred.

5. A study of the fate of mucosally bound 65Zn showed that over the first 30 min a proportion of the 65Zn was rapidly transferred to the carcase and this was probably associated with the rapid phase of 65Zn absorption described previously. From 30 min up to 6 h after the initial binding, 65Zn was also transferred to the carcase albeit at a much slower rate indicating a slow phase of Zn absorption. A study of the kinetics of this slow phase indicated that the loss of bound 65Zn to the body was a saturable process indicating an enzyme or ‘carrier’-mediated process. A comparison of the kinetics of the slow and rapid phases of 65Zn absorption suggests that these processes are distinct.

6. Histological examination of mucosal tissue of loops exposed to 200 μg Zn/ml revealed no discernable damage. Similarly, no effect was observed on either arginine or glucose uptake by isolated duodenal loops in situ, although this concentration of Zn completely abolished fluid uptake. A study of the effect of different doses of Zn showed that 50 μg Zn/ml inhibited mucosal fluid uptake by more than 50% and 100 μg Zn/ml by more than 90%. It was concluded that these effects were due to a specific action on the fluid-transfer process and not due to a general poisoning of the mucosa.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Ballou, J. E. & Thompson, R. C. (1961). Hlth Phys. 6, 6.CrossRefGoogle Scholar
Becker, W. M. & Hoekstra, W. G. (1971). In Intestinal Absorption of Metal Ions, Trace Elements and Radio-nuclides, p. 229. [Skoryna, S. C. and Waldron-Edward, D., editors]. Oxford: Pergarnon.CrossRefGoogle Scholar
Cotzias, G. C., Borg, D. C. & Selleck, B. (1962). Am. J. Physiol. 202, 359.CrossRefGoogle Scholar
Cousins, R. J. (1978). Proc. 3rd int. Symp. Trace Element Metabolism in Man and Animals, p. 57.Google Scholar
Davies, N. T. (1973). J. Physiol., Lond. 229, 46.Google Scholar
Davies, N. T. & Nightingale, R. (1975). Br. J. Nutr. 34, 243.CrossRefGoogle Scholar
Evans, G. W. (1976). Proc. Soc. exp. Biol. Med. 151, 775.CrossRefGoogle Scholar
Evans, G. W., Grace, C. I. & Votava, H. J. (1975). Am. J. Physiol. 228, 501.CrossRefGoogle Scholar
Evans, G. W. & Hahn, C. J. (1974). In Advances in Experimental Medicine and Biology, p. 285. [Friedman, M., editor] New York: Plenum Press.Google Scholar
Evans, G. W. & Johnson, P. E. (1978). Proc. 3rd int. Symp. Trace Element Metabolism in Man and Animals, P. 98.Google Scholar
Evans, G. W., Majors, P. F. & Cornatzer, W. R. (1970). Res. Commun. 40, 1142.Google Scholar
Feaster, J. P., Hansard, S. L., McCall, J. T. & Davies, G. K. (1955). Am. J. Physiol. 181, 287.CrossRefGoogle Scholar
Forbes, R. M. (1961). J. Nutr. 74, 194.CrossRefGoogle Scholar
Forbes, R. M. & Yohe, M. (1960). J. Nutr. 70, 53.CrossRefGoogle Scholar
Forth, W. & Rummel, W. (1971). In Intestinal absorption of Metal Ions, Trace Elements and Radionuclides, p. 173. [Skoryna, S. C. and Waldron-Edward, D., editors]. Oxford: Pergamon.CrossRefGoogle Scholar
Furchner, J. E. & Richmond, C. R. (1962). Hlth Phys. 8, 35.CrossRefGoogle Scholar
Heth, D. A. & Hoekstra, W. G. (1965). J. Nutr. 35. 367.CrossRefGoogle Scholar
Kowalski, S., Blair-Stanek, C. S. & Schacter, D. (1974). Am. J. Physiol. 226, 401.CrossRefGoogle Scholar
Likuski, H. J. A. & Forbes, R. M. (1965). J. Nutr. 85, 230.CrossRefGoogle Scholar
Macpherson, H. T. (1942). Biochem. J. 36, 59.CrossRefGoogle Scholar
Methfessel, A. H. & Spencer, H. (1973 a). J. appl. Physiol. 31, 58.CrossRefGoogle Scholar
Methfessel, A. H. & Spencer, H. (1973 b). J. appl. Physiol. 31, 63.CrossRefGoogle Scholar
Nelson, N. (1944). J. biol. Chem. 153, 375.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1976). J. Nutr. 106, 159.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1977). Biochem. Biophys. Res. Comm. 75, 286.CrossRefGoogle Scholar
Rubini, M. E., Montalvo, G., Lockhart, C. P. & Johnson, C. R. (1961). Am. J. Physiol. 200, 1345.CrossRefGoogle Scholar
Smith, K. T., Cousins, R. J., Silbon, B. L. & Failla, M. L. (1978). J. Nutr. 108, 1849.CrossRefGoogle Scholar
Somogyi, M. (1945). J. biol. Chem. 160, 61.CrossRefGoogle Scholar
Spencer, M., Vankinscott, V., Lewis, I. & Samachson, J. (1965). J. Nutr. 86, 169.CrossRefGoogle Scholar
Starcher, B. C. (1969). J. Nutr. 97, 321.CrossRefGoogle Scholar
Suso, F. A. & Edwards, H. M. (1971 a). Proc. Soc. exp. Biol. Med. 137, 306.CrossRefGoogle Scholar
Suso, F. A. & Edwards, H. M. (1971 b). Proc. Soc. exp. Biol. Med. 138, 157.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed., p. 217. London: Academic Press.Google Scholar
Van Campen, D. R. (1966). J. Nutr. 88, 125.CrossRefGoogle Scholar
Van Campen, D. R. (1969). J. Nutr. 97, 104.CrossRefGoogle Scholar
Van Campen, D. R. & Kowalski, T. J. (1971). Proc. Soc. exp. Biol. Med. 136, 294.CrossRefGoogle Scholar
Van Campen, D. R. & Mitchell, E. A. (1965). J. Nutr. 86, 120.CrossRefGoogle Scholar
Van Campen, D. R. & Scaife, P. U. (1967). J. Nutr. 91, 473.CrossRefGoogle Scholar
Whiting, F. & Bezeau, L. M. (1958). Can. J. Anim. Sci. 38, 109.CrossRefGoogle Scholar
Williams, R. B. & Mills, C. F. (1970). Br. J. Nutr. 24, 989.CrossRefGoogle Scholar