Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T20:42:02.541Z Has data issue: false hasContentIssue false

Effects of feeding a palatable ‘cafeteria’ diet on energy balance in young and adult lean (+/?) Zucker rats

Published online by Cambridge University Press:  04 June 2009

Nancy J. Rothwell
Affiliation:
Department of Physiology, St. George's Hospital Medical School, Tooting, London SW17 0RE
Michael J. Stock
Affiliation:
Department of Physiology, St. George's Hospital Medical School, Tooting, London SW17 0RE
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of feeding a palatable and varied ‘cafeteria’ diet on energy balance were studied in young (5·5 week) and adult (5·5 month) lean male Zucker (+/?) rats.

2. Estimates of metabolizable energy (ME) intake derived from food composition tables were almost identical to values obtained from bomb calorimetry of foods, urine and faeces, and ME intake was elevated by approximately 73% in all ‘cafeteria’ animals compared to stock-fed controls.

3. ‘Cafeteria’ feeding had no effect on the body-weight of young rats but induced excess weight gains in the older animals and resulted in increased deposition of fat and energy in both groups. Energy expenditure, calculated from ME intake and body-energy gain, was elevated by 77 and 57% in young and adult cafeteria rats respectively. The energy cost of fat deposition could account for only a small proportion of this increased expenditure.

4. The present results confirm previous findings in another strain of rat and show that the increased energy expenditure (i.e. diet-induced thermogenesis, DIT) which occurs in response to hyperphagia is not restricted to young animals but is also seen in older rats. Measurements of resting oxygen consumption after injections of noradrenaline or a β-adrenergic antagonist (propranolol), and changes in brown adipose tissue mass are consistent with the suggestion that the DIT of ‘cafeteria’-fed rats results from sympathetic activation of brown fat.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Andrews, J. F. & Donne, B. (1982). Proc. Nutr. Soc. 41, 36A.Google Scholar
ARC/MRC Committee (1974). Food and Nutrition Research Report of ARC/MRC Committee, p. 30. London: H. M. Stationery Office.Google Scholar
Armitage, G., Hervey, G. R., Rolls, B. J., Rowe, E. A. & Tobin, G. (1981 a). J. Physiol., Lond. 316, 48P.Google Scholar
Armitage, G., Hervey, G. R., Rolls, B. J., Rowe, E. A. & Tobin, G. (1981 b). J. Physiol., Lond. 317, 48P.Google Scholar
Brooks, S. L., Rothwell, N. J. & Stock, M. J. (1981). Proc. Nutr. Soc. 40, 58A.Google Scholar
Brooks, S. L., Rothwell, N. J., Stock, M. J., Goodbody, A. E. & Trayhurn, P. (1980). Nature, Lond. 286, 274.CrossRefGoogle Scholar
Bruck, K. (1970). In Brown Adipose Tissue, Ch. 5, p. 118 [Lindberg, O., editor]. New York: Elsevier.Google Scholar
Danforth, E., Burger, A. G. & Wimpfheimer, C. (1978). In Effectors of Thermogenesis, p. 213 [Seydoux, J. and Girardier, L., editors]. Stuttgart: Birkhauser.CrossRefGoogle Scholar
Djazayery, A., Miller, D. S. & Stock, M. J. (1979). Nutr. Metab. 23, 357.CrossRefGoogle Scholar
Hervey, G. R. & Tobin, G. (1981). Nature, Lond. 289, 699.CrossRefGoogle Scholar
Landsberg, L., Saville, E., Young, J. B., Rothwell, N. J. & Stock, M. J. (1981). Clin. Res. 29, 542A.Google Scholar
Lotfi, M., Macdonald, I. A. & Stock, M. J. (1976). Br. J. Nutr. 36, 305.Google Scholar
Miller, D. S. & Payne, P. R. (1959). Br. J. Nutr. 13, 501.CrossRefGoogle Scholar
Norgan, N. G. & Durnin, J. V. G. A. (1980). Am. J. clin. Nutr. 33, 978.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1978). The Composition of Foods. London: H. M. Stationery Office.Google Scholar
Pullar, J. D. & Webster, A. J. F. (1977). Br. J. Nutr. 37, 355.CrossRefGoogle Scholar
Reichlin, S., Bollinger, J., Nejad, I. & Sullivan, P. (1973). Sinai J. Med. 40, 502.Google Scholar
Rothwell, N. J. & Stock, M. J. (1979 a). Nature, Lond. 281, 31.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1979 b). Br. J. Nutr. 41, 625.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1979 c). J. Comp. Physiol. Psychol. 93, 1024.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1980 a). Proc. Nutr. Soc. 39, 20A.Google Scholar
Rothwell, N. J. & Stock, M. J. (1980 b). Proc. Nutr. Soc. 39, 45A.Google Scholar
Rothwell, N. J. & Stock, M. J. (1980 c). Can. J. Physiol. Pharmac. 58, 842.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1981 a). Pflügers Archs. 389, 237.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1981 b). Metabolism. 30, 673.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1982). J. Physiol., Lond. (In the Press).Google Scholar
Rothwell, N. J., Stock, M. J. & Wyllie, M. G. (1981). Biochem. Pharmac. 30, 1709.CrossRefGoogle Scholar
Seydoux, J., Rohner-Jeanrenaud, F., Assimacopoulos-Jeannet, F., Jeanrenaud, B. & Girardier, L. (1981). Pflügers Archs 390, 1.CrossRefGoogle Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). Br. J. Nutr. 24, 517.CrossRefGoogle Scholar
Stephens, D. N. (1980). Br. J. Nutr. 44, 215.CrossRefGoogle Scholar
Stock, M. J. (1975). J. appl. Physiol. 39, 849.CrossRefGoogle Scholar
Thurlby, P. L. & Trayhurn, P. (1979). Br. J. Nutr. 423, 377.CrossRefGoogle Scholar
Thurlby, P. L. & Trayhurn, P. (1980). Pflügers Archs. 385, 193.CrossRefGoogle Scholar
Tulp, O., Frink, R., Sims, E. A. H. & Danforth, E. (1980). Clin. Res. 28, 621A.Google Scholar