Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T13:17:03.326Z Has data issue: false hasContentIssue false

The determination of the minimal nitrogen excretion in steers and dairy cows and its physiological and practical implications

Published online by Cambridge University Press:  09 March 2007

E. R. Ørskov
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
N. A. MacLeod
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Cattle were maintained by intragastric infusion to see how much nitrogen was excreted on protein-free diets.

2. Minimal N excretion was estimated with two dairy cows in three periods, i.e. when they were non-pregnant and non-laclating, when they were between 117 and 133 d pregnant and when they were between 220 and 233 d pregnant. The minimal N excretion was also estimated on two occasions with two steers when their average live weights were 200 and 350 kg.

3. Average urinary N excretion without protein infusion was 298, 305 and 283 mg/kg metabolic live weight (W0·75) for the non-pregnant cows and for cows during the first and second periods of pregnancy respectively; total N excretion including the faecal N was 340, 329 and 319 g/kg W0·75.

4. For steers the urinary N values were 403 and 295 mg/kg W0·75 at 200 and 350 kg live weight respectively and total N excretion including faecal N was 408 and 320 mg/kg W0·75.

5. Urinary excretion of creatinine was the same for animals given casein via the abomasum as a source of protein or given no protein with mean values for the cows of 13·6 and 14·9 g/d for the first and second stages of pregnancy respectively. Mean values for the steers were 6·5 and 7·6 g creatinine/d at 200 and 350 kg live weight respectively.

6. It is suggested that the so-called metabolic faecal N in ruminants, estimated with N-free diets, is mainly endogenous N derived from tissue breakdown of protein but incorporated in microbial debris and excreted in the faeces.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Agricultural Research Council (1980). Nutrient Requirements for Ruminants. Slough, England: Commonwealth Agricultural Bureau.Google Scholar
Blaxter, K. L. (1962). Br. J. Nutr. 16, 615.Google Scholar
Blaxter, K. L. (1964). In The Role of the Gastrointestinal Tract in Protein Metabolism, p. 143 [Munro, H. N., editor]. Oxford: Blackwell Scientific.Google Scholar
Blaxter, K. L. & Mitchell, H. H. (1947). J. Anim. Sci. 6, 483.Google Scholar
Blaxter, K. L. & Mitchell, H. H. (1948). J. Anim. Sci. 7, 351.CrossRefGoogle Scholar
Blaxter, K. L. & Wood, W. A. (1951). Br. J. Nutr. 5, 11.Google Scholar
Checal, U., Mehra, V. R., Nath, K. & Ranjhan, S. K. (1975). J. agric. Sci., Camb. 84, 1.Google Scholar
Clarke, E. M. W., Ellinger, G. M. & Phillipson, A. T. (1962). Proc. R. Soc. Ser. B 166, 63.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, Lond. 95, 181.Google Scholar
Elliot, R. C. & Topps, J. H. (1967). Anim. Prod. 9, 219.Google Scholar
Ellis, W. C., Garner, G. B., Muhrer, M. E. & Phander, W. H. (1956). J. Nutr. 60, 413.CrossRefGoogle Scholar
Graystone, J. E. (1968). In Human Growth [Cheek, D. B., editor]. Philadelphia: Lea & Febiger.Google Scholar
Harris, L. E. & Mitchell, H. H. (1941). J. Nutr. 22, 167.CrossRefGoogle Scholar
Hawk, P. B., Oser, B. L. & Summerson, W. H. (1947). In Practical Physiological Chemistry, p. 506. San Francisco: McGraw Hill Co.Google Scholar
Hovell, F. D. & Ørskov, E. R. (1981). Anim. Prod. (In the Press).Google Scholar
Jakobsen, P. E. (1958). In Dyrefysiologi, Den Kgi Vet og Landbohojskole Copenhagen, p. 267.Google Scholar
Kehar, N. D., Mukherjee, R. & Senk, C. (1943). Indian J. vet. Sci. 13, 257.Google Scholar
Kempton, T. J. & Leng, R. A. (1979). Br. J. Nutr. 39, 105.Google Scholar
Loffgren, G. P. & Garrett, W. N. (1954). J. Anim. Sci. 13, 496.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 624.CrossRefGoogle Scholar
Mason, V. C. (1969). J. agric. Sci., Camb. 73, 99.CrossRefGoogle Scholar
Mitchell, H. H. (1926). Bull. US natn. Res. Counc. No. 55.Google Scholar
Morris, S. & Roy, S. C. (1939). Biochem. J. 33, 1217.Google Scholar
Mukherjee, R, & Mitchell, H. H. (1949). J. Nutr. 37, 303.Google Scholar
Ørskov, E. R., Fraser, C., Mason, V. C. & Mann, S. O. (1970). Br. J. Nutr. 24, 671.CrossRefGoogle Scholar
Ørskov, E. R. & Grubb, D. A. (1978). Proc. Nutr. Soc. 38, 24 A.Google Scholar
Ørskov, E. R. & Grubb, D. A. (1979). Anim. Prod. 29, 371.Google Scholar
Ørskov, E. R., Grubb, D. A., Smith, J. S., Webster, A. J. F. & Corrigal, W. (1979). Br. J. Nutr. 41, 541.Google Scholar
Ørskov, E. R., Grubb, D. A., Wenham, G. & Corrigal, W. (1979). J. Nutr. 41, 553.CrossRefGoogle Scholar
Ørskov, E. R., McDonald, I., Grubb, D. A. & Pennie, I. (1976). J. agric. Sci., Camb. 86, 411.Google Scholar
Palmer, W. W., Means, J. H. & Gamble, J. L. (1914). J. biol. Chem. 19, 239.CrossRefGoogle Scholar
Smith, T., Broster, V. J. & Hill, R. E. (1980). J. agric. Sci., Camb. (In the Press).Google Scholar
Smuts, D. B. (1935). J. Nutr. 9, 403.CrossRefGoogle Scholar
Sotola, J. (1930). J. agric. Res., Camb. 40, 79.Google Scholar
Storm, E. & Ørskov, E. R. (1979). Ann. Rech. Vet. 10, 297.Google Scholar
Storm, E. & Ørskov, E. R. (1982). Proc. Nutr. Soc. (In the Press).Google Scholar
Terroine, E. F. & Sorg-Matter, H. (1927). Archs int. Physiol. 29, 121.Google Scholar
Topps, J. T. & Elliot, R. C. (1967). Anim. Prod. 9, 219.Google Scholar
Turk, K. L., Momsen, F. B. & Maynard, L. A. (1934). J. agric. Res., Camb. 48, 555.Google Scholar
Verite, R., Journet, M. & Jarrige, R. (1979). Livestock Prod. Sci. 6, 349.Google Scholar
Walker, D. M. & Faichney, G. J. (1964 a). Br. J. Nutr. 18, 187.CrossRefGoogle Scholar
Walker, D. M. & Faichney, G. J. (1964 b). Br. J. Nutr. 18, 201.CrossRefGoogle Scholar