Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T19:58:30.225Z Has data issue: false hasContentIssue false

Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats

Published online by Cambridge University Press:  09 March 2007

Hassan Younes
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
Charles Coudray*
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
Jacques Bellanger
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
Christian Demigné
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
Yves Rayssiguier
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
Christian Rémésy
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micronutriments, Centre de Recherche INRA Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France
*
*Corresponding author: Dr Charles Coudray, fax +33 473 62 46 38, email coudray@clermont.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Resistant starch and inulin are complex carbohydrates that are fermented by the microflora and known to increase colonic absorption of minerals in animals. The fermentation of these substrates in the large bowel to short-chain fatty acids is the main reason for this increase in mineral absorption. The purpose of the present study was to examine the potential synergistic effect of a combination of these two fermentable carbohydrates. For this purpose, thirty-two adult male Wistar rats weighing 200 g were used in the present study. The rats were distributed into four groups, and fed for 21 d a fibre-free basal purified diet or diet containing 100 g inulin, or 150 g resistant starch (raw potato starch)/kg diet or a blend of 50 g inulin and 75 g resistant starch/kg diet. After an adaptation period of 14 d, the rats were then transferred to metabolic cages and dietary intake, faeces and urine were monitored for 5 d. The animals were then anaesthetized and caecal Ca and Mg absorption were measured. Finally, the rats were killed and blood, caecum and tissues were sampled. Ca and Mg levels were assessed in diets, faeces, urine, caecum and plasma by atomic absorption spectrometry. Our results confirmed that inulin and resistant starch ingestion led to considerable caecal fermentation in the three experimental groups compared with the control group diet. Moreover, both carbohydrates significantly increased the intestinal absorption and balance of Ca and Mg, without altering the plasma level of these two minerals. Interestingly, the combination of the studied carbohydrates increased significantly (P<0·05) the caecal soluble Ca and Mg concentrations, the apparent intestinal absorption and balance of Ca, and non-significantly the plasma Mg level. In conclusion, a combination of different carbohydrates showed synergistic effects on intestinal Ca absorption and balance in rats. Further studies with other types of carbohydrate combinations should be carried out to extend these findings.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2001

References

Allen, LH (1982) Calcium bioavailability and absorption: a review. American Journal of Clinical Nutrition 35, 783808.CrossRefGoogle ScholarPubMed
Andrieux, C, Gadelle, D, Leprince, C & Sacquet, E (1989) Effects of some poorly digestible carbohydrates on bile acid bacterial transformation in the rat. British Journal of Nutrition 62, 103119.CrossRefGoogle ScholarPubMed
Brink, EJ & Beynen, AC (1992) Nutrition and magnesium absorption: a review. Progress in Food and Nutritional Science 16, 125162.Google ScholarPubMed
Campbell, JM, Fahey, GC & Wolf, BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. Journal of Nutrition 127, 130136.CrossRefGoogle ScholarPubMed
Coudray, C, Bellanger, J, Castiglia-Delavaud, C, Rémésy, C, Vermorel, M & Rayssiguier, Y (1997 a) Effect of soluble and insoluble dietary fiber supplementation in healthy young men: apparent absorption and balance of calcium, magnesium, iron and zinc. European Journal of Clinical Nutrition 51, 375380.CrossRefGoogle Scholar
Coudray, C, Pépin, D, Tressol, JC, Bellanger, J & Rayssiguier, Y (1997 b) Study of magnesium bioavailability using magnesium stable isotopes and inductively-coupled plasma – mass spectrometry technique in rat: simple and double labelling approaches. British Journal of Nutrition 77, 957970.CrossRefGoogle Scholar
Coudray, C & Fairweather-Tait, SJ (1998) Do oligosaccharides affect intestinal absorption of calcium in humans? American Journal of Clinical Nutrition 68, 921923.Google ScholarPubMed
de Deckere, EAM, Kloots, WJ & Van Amelsvoort, JMM (1993) Resistant starch decreases serum total cholesterol and triglycerol concentrations in rats. Journal of Nutrition 123, 21422151.Google Scholar
Delzenne, N, Aertssens, J, Verplaetse, H, Roccaro, M & Roberfroid, M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sciences 57, 15791587.CrossRefGoogle ScholarPubMed
Demigné, C, Rémésy, C & Rayssiguier, Y (1980) Effect of fermentable carbohydrates on volatile fatty acids, ammonia and mineral absorption in the rat caecum. Reproduction Nutrition & Développement 20, 13511359.CrossRefGoogle ScholarPubMed
Demigné, C & Rémésy, C (1985) Stimulation of absorption of volatile fatty acids and minerals in the cecum of rats adapted to a very high fiber diet. Journal of Nutrition 115, 5360.CrossRefGoogle ScholarPubMed
Demigné, C, Levrat, MA & Rémésy, C (1989) Effects of feeding fermentable carbohydrates on the cecal concentrations of minerals and their fluxes between the cecum and blood plasma in the rat. Journal of Nutrition 119, 16251630.CrossRefGoogle ScholarPubMed
Ebel, H & Gunther, T (1980) Magnesium metabolism: a review. Journal of Clinical Chemistry and Clinical Biochemistry 18, 257270.Google ScholarPubMed
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Hardwick, LL, Jones, MR, Brautbar, N & Lee, DB (1990) Site and mechanism of intestinal magnesium absorption. Minerals and Electrolyte Metabolism 16, 174180.Google ScholarPubMed
Heijnen, AM, Brink, EJ, Lemmens, AG & Beynen, AC (1993) Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. British Journal of Nutrition 70, 747756.CrossRefGoogle ScholarPubMed
Jackson, KG, Taylor, GRJ, Clohessy, AM & Williams, CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. British Journal of Nutrition 82, 2330.CrossRefGoogle ScholarPubMed
Kayne, LH & Lee, DB (1993) Intestinal magnesium absorption. Minerals and Electrolyte Metabolism 19, 210217.Google ScholarPubMed
Kvietys, PR & Granger, DN (1981) Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80, 962969.CrossRefGoogle ScholarPubMed
Kruse, HP, Kleessen, B & Blaut, M (1999) Effects of inulin on faecal bifidobacteria in human subjects. British Journal of Nutrition 82, 375382.CrossRefGoogle ScholarPubMed
Lajvardi, A, Mazarin, GI, Gillespie, B, Satchithanadam, S & Calvert, RJ (1993) Starches of varied digestibilities modify intestinal function in rats. Journal of Nutrition 123, 20592066.Google ScholarPubMed
Le Blay, G, Michel, C, Blottiere, HM & Cherbut, C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. Journal of Nutrition 129, 22312235.CrossRefGoogle Scholar
Levrat, MA, Behr, SR, Rémésy, C & Demigné, C (1991 a) Effects of soybean fiber on cecal digestion in rats previously adapted to a fiber-free diet. Journal of Nutrition 121, 672678.CrossRefGoogle ScholarPubMed
Levrat, MA, Rémésy, C & Demigné, C (1991 b) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Lopez, WH, Coudray, C, Bellanger, J, Younes, H, Demigné, C & Rémésy, C (1998) Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilisation in rats. Journal of Nutrition 128, 11921198.CrossRefGoogle ScholarPubMed
Lopez, WH, Coudray, C, Bellanger, J, Levrat-Verny, MA, Demigné, C, Rayssiguier, Y & Rémésy, C (2000) Resistant starch improves mineral assimilation in rats adapted to a wheat bran diet. Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilisation in rats. Nutritional Research 20, 141155.CrossRefGoogle Scholar
Lutz, T, Wurmli, R & Scharrer, E (1991) Short-chain fatty acids stimulate magnesium absorption by the colon. In Magnesium –A Relevant Ion, pp. 131137 [Lasserre, B and Durlach, J, editors]. London: John Libbey.Google Scholar
McCance, R & Widdowson, E (1942) Mineral metabolism of healthy adults on white and brown bread dietaries. Journal of Physiology 101, 4485.CrossRefGoogle Scholar
Morais, MB, Feste, A, Miller, RG & Lifschitz, CH (1996) Effect of resistant and digestible starch on intestinal absorption of calcium, iron and zinc in infant pigs. Pediatric Research 39, 872876.CrossRefGoogle ScholarPubMed
Navas, FJ & Cordova, A (1996) Effect of magnesium supplementation and training on magnesium tissue distribution in rats. Biological Trace Element Research 53, 137145.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtuki, M, Takizawa, T, Inaba, H, Adachi, T & Kimura, S (1994) Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. International Journal of Vitamin and Nutritional Research 64, 316323.Google ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Adachi, T, Sakata, T & Sakaguchi, EI (1995) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. Journal of Nutrition 125, 24172424.CrossRefGoogle ScholarPubMed
Ohta, A, Baba, S, Ohtsuki, M, Taguchi, A & Adachi, T (1996) Prevention of coprophagy modifies magnesium absorption in rats fed with fructo-oligosaccharides. British Journal of Nutrition 75, 775784.CrossRefGoogle ScholarPubMed
Rayssiguier, Y & Rémésy, C (1977) Magnesium absorption in the caecum of rats related to volatile fatty acids production. Annuelle de Recherche Vétérinaire 8, 105110.Google ScholarPubMed
Reinhold, JG, Faradji, B, Abadi, P & Ismail-Beigi, F (1976) Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. Journal of Nutrition 106, 493503.CrossRefGoogle ScholarPubMed
Rémésy, C, Levrat, MA, Gamet, L & Demigné, C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. American Journal of Physiology 264, G855G862.Google ScholarPubMed
Scharrer, E & Lutz, T (1990) Effects of short chain fatty acids and K on absorption of Mg and other cations by the colon and caecum. Zeitung Ernahrungswissenschaft 29, 162168.CrossRefGoogle Scholar
Scharrer, E & Lutz, T (1992) Relationship between volatile fatty acids and magnesium absorption in mono- and poly-gastric species. Magnesium Research 5, 5360.Google ScholarPubMed
Tahiri, M, Tressol, JC, Arnaud, J, Bornet, F, Bouteloup, C, Feillet-Coudray, C, Ducros, V, Pépin, D, Brouns, F, Roussel, AM, Rayssiguier, Y & Coudray, C (2001) Five week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in post menopausal women. Journal of Bone and Mineral Research (In the Press).CrossRefGoogle Scholar
Topping, DL, Illman, RJ & Trimble, RP (1985) Volatile fatty acid concentrations in rats fed diets containing gum arabic and cellulose separately and as a mixture. Nutrition Reports International 32, 809814.Google Scholar
Trinidad, TP, Wolever, TM & Thompson, LU (1996) Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. American Journal of Clinical Nutrition 63, 574578.CrossRefGoogle ScholarPubMed
Trinidad, TP, Wolever, TMS & Thompson, LU (1999) Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15, 529533.CrossRefGoogle ScholarPubMed
Van den Heuvel, EGHM, Schaafsma, G, Muys, T & Van Dokkum, W (1998) Non-digestible oligosaccharides do not intefere with calcium and nonheme-iron absorption in young, healthy men. American Journal of Clinical Nutrition 67, 445451.CrossRefGoogle Scholar
Van den Heuvel, EG, Muys, T, van Dokkum, W & Schaafsma, G (1999) Oligofructose stimulates calcium absorption in adolescents. American Journal of Clinical Nutrition 69, 544548.CrossRefGoogle ScholarPubMed
Yanahira, S, Morita, M, Aoe, S, Suguri, T, Takada, Y, Miura, S & Nakajima, I (1997) Effects of lactitol-oligosaccharides on calcium and magnesium absorption in rats. Journal of Nutritional Science of Vitaminology (Tokyo) 43, 123132.CrossRefGoogle ScholarPubMed
Younes, H, Levrat, MA, Demigné, C & Rémésy, C (1993) Relationship between fermentations and calcium in the cecum of rats fed digestible or resistant starch. Annals of Nutritional Metabolism 37, 311319.CrossRefGoogle ScholarPubMed
Younes, H, Levrat, MA, Demigné, C & Rémésy, C (1995) Resistant starch is more effective than cholestyramine as a lipids-lowering agent in the rat. Lipids 30, 847853.CrossRefGoogle Scholar
Younes, H, Demigné, C & Rémésy, C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. British Journal of Nutrition 75, 301314.CrossRefGoogle ScholarPubMed