Skip to main content

Advertisement

Log in

Measles infection of the central nervous system

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) complications occuring early and late after acute measles are serious and often fatal. In spite of functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from subacute sclerosing panencephalitis (SSPE). The known cellular receptors for measle virus (MV) in humans, CD46 and CD150 (signaling lymphocyte activation molecule, SLAM), are important components of the viral tropism by mediating binding and entry to peripheral cells. Because neural cells do not express SLAM and only sporadically CD46, virus entry to neural cells, and spread within the CNS, remain mechanistically unclear. Mice, hamsters, and rats have been used as model systems to study MV-induced CNS infections, and revealed interesting aspects of virulence, persistence, the immune response, and prerequisites of protection. With the help of recombinant MV and mice expressing transgenic receptors, questions such as receptor-dependent viral spread, or viral determinants of virulence, have been investigated. However, many questions concerning the human MV-induced CNS diseases are still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen IV, McQuaid S, McMahon J, Kirk J, McConnell R (1996). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55: 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Andersson T, Schultzberg M, Schwarz R, Love A, Wickman C, Kristensson K (1991). NMDA-receptor antagonist prevents measles virus-induced neurodegeneration. Eur J Neurosci 3: 66–71.

    Article  PubMed  Google Scholar 

  • Baczko K, Lampe J, Liebert UG, Brinckmann U, ter Meulen V, Pardowitz I, Budka H, Cosby SL, Isserte S, Rima BK (1993). Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197: 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17: 3899–3908.

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988). Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55: 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995). A novel receptor involved in T-cell activation. Nature 376: 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Dhib-Jalbut S, Xia J, Rangaviggula H, Fang Y-Y, Lee T (1999). Failure of measles virus to activate nuclear factor-κB in neuronal cells: implications on the immune response to viral infections in the central nervous system. J Immunol 162: 4024–4029.

    PubMed  CAS  Google Scholar 

  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Duclos P, Ward BJ (1998). Measles vaccines. A review of adverse events. Drug Experience 6: 435–454.

    Google Scholar 

  • Duprex WP, Duffy I, McQuaid S, Hamill L, Schneider-Schaulies J, Cosby L, Billeter M, ter Meulen V, Rima B (1999a). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73: 6916–6922.

    PubMed  CAS  Google Scholar 

  • Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999b). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73: 9568–9575.

    PubMed  CAS  Google Scholar 

  • Erlenhoefer C, Wurzer WJ, Loffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001). CD150 (SLAM) is a receptor for measles virus, but is not involved in viral contact-mediated proliferation inhibition. J Virol 75: 4499–4505.

    Article  PubMed  CAS  Google Scholar 

  • Evlashev A, Moyse E, Valentin H, Azocar O, Trescol-Biemont M-C, Marie JC, Rabourdin-Combe C, Horvat B (2000). Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74: 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  • Fang Y-Y, Song Z-M, Dhib-Jalbut S (2001). Mechanism of measles virus failure to activate NFκ-B in neuronal cells. J NeuroVirol 7: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Finke D, Brinckmann UG, ter Meulen V, Liebert UG (1995). Gamma interferon is a major mediator of the antiviral defense in experimental measles virus-induced encephalitis. J Virol 69: 5469–5474.

    PubMed  CAS  Google Scholar 

  • Finke D, Liebert UG (1994). CD4+ T cells are essential in overcoming experimental murine measles encephalitis. Immunology 83: 184–189.

    PubMed  CAS  Google Scholar 

  • Fournier P, Brons NH, Berbers GA, Wiesmuller KH, Fleckenstein BT, Schneider F, Jung G, Muller CP (1997). Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J Gen Virol 78: 1295–1302.

    PubMed  CAS  Google Scholar 

  • Gogate N, Swoveland P, Yamabe T, Verma L, Woyciechowska J, Tarnowska-Dziduszko E, Dymecki J, Dhib-Jalbut S (1996). Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis. J Neuropathol Exp Neurol 55: 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE, Bellini WJ (1996). Measles virus. In: Fields Virology. Fields BN, Knipe DM, Howley PM, et al (eds). Philadelphia: Lippincott-Raven Publishers, pp 1267–1312.

    Google Scholar 

  • Hara T, Yamashita S, Aiba H, Nihei K, Koide N, Good RA, Takeshita K (2000). Measles virus-specific T helper 1/T helper 2-cytokine production in subacute sclerosing panencephalitis. J NeuroVirol 6: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Hofman FM, Hinton DR, Baemayr J, Weil M, Merrill JE (1991). Lymphokines and immunoregulatory molecules in subacute sclerosing panencephalitis. Clin Immunol Immunopathol 58: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rarourdin-Combe C (1996). Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 70: 6673–6681.

    PubMed  CAS  Google Scholar 

  • Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immuno-suppressive properties of this virus. Virology 279: 9–21.

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Ayata M, Shingai M, Furukawa K, Seto T, Matsunaga I, Muraoka M, Ogura H (2002). Comparison of the neuropathogenicity of two SSPE sibling viruses of the Osaka-2 strain isolated with Vero and B95a cells. J NeuroVirol 8: 6–13.

    Article  PubMed  Google Scholar 

  • Jin L, Beard S, Hunjan R, Brown D, Miller E (2002). Characterization of measles virus strains causing SSPE: a study of 11 cases. J NeuroVirol 8: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Katz M (1995). Clinical spectrum of measles. Curr Top Microbiol Immunol 191: 1–12.

    PubMed  CAS  Google Scholar 

  • Lawrence DMP, Patterson CE, Gales TL, D’Orazio JL, Vaughn MM, Rall GF (2000). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74: 1908–1918.

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG (1997). Measles virus infections of the central nervous system. Intervirology 40: 176–184.

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Oldstone MBA (1999). Characterization of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroimmunol 96: 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MBA (2000). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74: 3967–3974.

    Article  PubMed  CAS  Google Scholar 

  • McQuaid S, Cosby SL (2002). An immunohistochemical study of the distribution of the measles virus receptors CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82: 1–7.

    Google Scholar 

  • Meissner NN, Koschel K (1995). Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69: 5191–5194.

    PubMed  CAS  Google Scholar 

  • Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y (2001). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82: 2913–2917.

    PubMed  CAS  Google Scholar 

  • Moeller K, Duffy I, Duprex P, Rima B, Beschorner R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J (2001). Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75: 7612–7620.

    Article  PubMed  CAS  Google Scholar 

  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998). Measles virus spread and pathogenesis in genetically modified mice. J Virol 72: 7420–7427.

    PubMed  CAS  Google Scholar 

  • Nakayama T, Mori T, Yamaguchi S, Sonoda S, Asamura S, Yamashity R, Takeuchi Y, Urano T (1995). Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and genetic variability. Virus Res 35: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032.

    PubMed  CAS  Google Scholar 

  • Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MBA (2000). Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74: 7478–7484.

    Article  PubMed  CAS  Google Scholar 

  • Neumeister C, Niewiesk S (1998). Recognition of measles virus-infected cells by CD8+ T cells depends on the H-2 molecule. J Gen Virol 79: 2583–2591.

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Brinckmann U, Bankamp B, Sirak S, Liebert UG, ter Meulen V (1993). Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. J Virol 67: 75–81.

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Schneider-Schaulies J, Ohnimus H, Jassoy C, Schneider-Schaulies S, Diamond L, Logan JS, ter Meulen V (1997). CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. J Virol 71: 7969–7973.

    PubMed  CAS  Google Scholar 

  • Ogata A, Czub S, Ogata S, Cosby SL, McQuaid S, Budka H, ter Meulen V, Schneider-Schaulies J (1997). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol 94: 444–449.

    Article  PubMed  CAS  Google Scholar 

  • Ogura H, Ayata M, Hayashi K, Seto T, Matsuoka O, Hattori H, Tanaka K, Tanaka K, Takano Y, Murata R (1997). Efficient isolation of subacute sclerosing panencephalitis virus from patient brains by reference to magnetic resonance and computed tomographic images. J NeuroVirol 3: 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J, Johnston ICD, Schneider-Schaulies J, Weidmann A, ter Meulen V, Schneider-Schaulies S (2001). The hemagglutinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immuno-suppression in vivo. J Gen Virol 82: 1835–1844.

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999). Measles virus infection in a transgenic model: virus-induced immunosuppresion and central nervous system disease. Cell 98: 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001). Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75: 4399–4401.

    Article  PubMed  CAS  Google Scholar 

  • Partidos CD, Ripley J, Delmas A, Obeid OE, Denbury A, Steward MW (1997). Fine specificity of the antibody response to a synthetic peptide from the fusion protein and protection against measles virus-induced encephalitis in a mouse model. J Gen Virol 78: 3227–3232.

    PubMed  CAS  Google Scholar 

  • Patterson CE, Lawrence DMP, Echols LA, Rall GF (2002). Immune-mediated protectionfrom measles virus-induced central nervous system disease is non-cytolytic and gamma interferon dependent. J Virol 76: 4497–4506.

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MBA (2001). Evidence that hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Polacino PS, Pinchuk LM, Sidorenko SP, Clark EA (1996). Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. J Med Primatol 25: 201–209.

    PubMed  CAS  Google Scholar 

  • Punnonen J, Cocks BG, Carballido JM, Bennett B, Peterson D, Aversa G, de Vries J (1997). Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J Exp Med 185: 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997). A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci USA 94: 4659–4663.

    Article  PubMed  CAS  Google Scholar 

  • Rammohan KW, McFarland HF, Bellini WJ, Gheuens J, McFarlin DE (1983). Antibody-mediated modification of encephalitis induced by hamster neurotropic measles virus. J Infect Dis 147: 546–550.

    Article  PubMed  CAS  Google Scholar 

  • Rammohan KW, McFarland HF, McFarlin DE (1981). Induction of subacute murine measles encephalitis by monoclonal antibody to virus haemagglutinin. Nature 290: 588–589.

    Article  PubMed  CAS  Google Scholar 

  • Rammohan KW, McFarland HF, McFarlin DE (1982). Suacute sclerosing panencephalitis after passive immunization and natural measles infection: role of antibody in persistence of measles virus. Neurology 32: 390–394.

    PubMed  CAS  Google Scholar 

  • Rima BK, Earle JAP, Baczko K, ter Meulen V, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78: 97–106.

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, Niewiesk S, Schneider-Schaulies S, ter Meulen V (1999). Measles virus in the CNS: the role of viral and host factors for the establishment and maintenance of a persistent infection. J NeuroVirol 5: 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Schneider-Schaulies J, Dunster LM, ter Meulen V (1995). Measles virus gene expression in neural cells. Curr Top Microbiol Immunol 191: 101–116.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Matsuishi T, Iwamoto R, Handa K, Yoshioka H, Kato H, Ueda S, Hara H, Tabira T, Mekada E (2002). Elevated levels of anti-CD9 antibodies in the cerebrospinal fluid of patients with subacute sclerosing panencephalitis. J Infect Dis 185: 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406: 893–897.

    Article  PubMed  CAS  Google Scholar 

  • ter Meulen V, Stephenson JR, Kreth HW (1983). Subacute sclerosing panencephalitis. In: Comprehensive virology, Vol. 18. Fraenkel-Conrat H, Wagner RR (eds), New York: Plenum Press, pp 105–159.

    Google Scholar 

  • Urbanska EM, Chambers BJ, Ljunggren HG, Norrby E, Kristensson K (1997). Spread of measles virus through axonal pathways into limbic structures in the brain of Tab-/-mice. J Med Virol 52: 362–369.

    Article  PubMed  CAS  Google Scholar 

  • Weidinger G, Czub S, Neumeister C, Harriott P, ter Meulen V, Niewiesk S (2000). Role of CD4+ and CD8+ T cells in the prevention of measles virus-induced encephalitis in mice. J Gen Virol 81: 2707–2713.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schneider-Schaulies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider-Schaulies, J., ter Meulen, V. & Schneider-Schaulies, S. Measles infection of the central nervous system. Journal of NeuroVirology 9, 247–252 (2003). https://doi.org/10.1080/13550280390193993

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280390193993

Keywords

Navigation