Skip to main content

Advertisement

Log in

Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Semliki Forest virus (SFV) provides an experimental model of acute virus encephalitis and virus-induced demyelinating disease. Two marker viruses expressing fluorescent proteins as part of the replicase or the structural open reading frame were used to evaluate virus replication in cells of the adult mouse brain. Both marker viruses established a high-titer infection in the adult mouse brain. As determined by location, morphology, and immunostaining with neural cell typespecific phenotypic markers, both viruses infected neurons and oligodendrocytes but not astrocytes. Determination of eGFP expression from either the replicase or the structural open-reading frame coupled with immunostaining for either the virus structural protein or the virus nonstructural protein-3 readily distinguished cells at early and late stages of infection. Neurons but not oligodendrocytes rapidly down-regulated virus replication. Rapid down-regulation of virus replication was also observed in mature but not immature primary cultures of rat hippocampal neurons. This study demonstrates for the first time that in vivo central nervous system (CNS) cells differ in their ability to suppress alphavirus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allsopp TE, Fazakerley JK (2000). Altruistic cell suicide and the specialized case of the virus-infected nervous system. Trends Neurosci 23: 284–290.

    Article  CAS  PubMed  Google Scholar 

  • Atasheva S, Gorchakov R, English R, Frolov I, Frolova E (2007). Development of Sindbis viruses encoding nsP2/GFP chimeric proteins and their application for studying nsP2 functioning. J Virol 81: 5046–5057.

    Article  CAS  PubMed  Google Scholar 

  • Atkins GJ, Sheahan BJ, Liljestrom P (1999). The molecular pathogenesis of Semliki Forest virus: a model virus made useful. J Gen Virol 80: 2287–2297.

    CAS  PubMed  Google Scholar 

  • Balluz IM, Glasgow GM, Killen HM, Mabruk MJ, Sheahan BJ, Atkins GJ (1993). Virulent and avirulent strains of Semliki Forest virus show similar cell tropism for the murine central nervous system but differ in the severity and rate of induction of cytolytic damage. Neuropathol Appl Neurobiol 19: 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Bradish CJ, Allner K, Maber HB (1971). The virulence of original and derived strains of Semliki Forest virus for mice, guinea-pigs and rabbits. J Gen Virol 12: 141–160.

    Article  CAS  PubMed  Google Scholar 

  • Del Piero F, Wilkins PA, Dubovi EJ, Biolatti B, Cantile C (2001). Clinical, pathologic, immunohistochemical, and virologic findings of eastern equine encephalomyelitis in two horses. Vet Pathol 38: 451–456.

    Article  PubMed  Google Scholar 

  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001). Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82: 1013–1025.

    CAS  PubMed  Google Scholar 

  • Fazakerley JK (2002). Pathogenesis of Semliki Forest virus encephalitis. J Neuro Virol 8(Suppl 2): 66–74.

    CAS  Google Scholar 

  • Fazakerley JK, Boyd A, Mikkola ML, Kaariainen L (2002). A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J Virol 76: 392–396.

    Article  CAS  PubMed  Google Scholar 

  • Fazakerley JK, Cotterill CL, Lee G, Graham A (2006). Virus tropism, distribution, persistence and pathology in the corpus callosum of the Semliki Forest virus-infected mouse brain: a novel system to study virus-oligodendrocyte interactions. Neuropathol Appl Neurobiol 32: 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H (1993). Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195: 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Fragkoudis R, Breakwell L, McKimmie C, Boyd A, Barry G, Kohl A, Merits A, Fazakerley JK (2007). The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J Gen Virol 88: 3373–3384.

    Article  CAS  PubMed  Google Scholar 

  • Frolov I, Hoffman TA, Pragai BM, Dryga SA, Huang HV, Schlesinger S, Rice CM (1996). Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A 93: 11371–11377.

    Article  CAS  PubMed  Google Scholar 

  • Frolova E, Gorchakov R, Garmashova N, Atasheva S, Vergara LA, Frolov I (2006). Formation of nsP3-specific protein complexes during Sindbis virus replication. J Virol 80: 4122–4134.

    Article  CAS  PubMed  Google Scholar 

  • Gates MC, Sheahan BJ, O’Sullivan MA, Atkins GJ (1985). The pathogenicity of the A7, M9 and L10 strains of Semliki Forest virus for weanling mice and primary mouse brain cell cultures. J Gen Virol 66 (Pt 11): 2365–2373.

    Article  PubMed  Google Scholar 

  • Glasgow GM, Sheahan BJ, Atkins GJ, Wahlberg JM, Salminen A, Liljestrom P (1991). Two mutations in the envelope glycoprotein E2 of Semliki Forest virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology 185: 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Griffin DE (2005). Neuronal cell death in alphavirus encephalomyelitis. Curr Top Microbiol Immunol 289: 57–77.

    Article  CAS  PubMed  Google Scholar 

  • Kiiver K, Tagen I, Zusinaite E, Tamberg N, Fazakerley JK, Merits A (2008). Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication. J Gen Virol 89: 1457–1466.

    Article  CAS  PubMed  Google Scholar 

  • Kujala P, Ikaheimonen A, Ehsani N, Vihinen H, Auvinen P, Kaariainen L (2001). Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 75: 3873–3884.

    Article  CAS  PubMed  Google Scholar 

  • Lemm JA, Rice CM (1993). Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of P123 and P34. J Virol 67: 1905–1915.

    CAS  PubMed  Google Scholar 

  • Liebert UG, Baczko K, Budka H, ter Meulen V (1986). Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol 67: 2435–2444.

    Article  CAS  PubMed  Google Scholar 

  • Liebert, UG, Schneider-Schaulies, S, Baczko, K, ter M, V (1990). Antibody-induced restriction of viral gene expression in measles encephalitis in rats. J Virol 64, 706–713.

    CAS  PubMed  Google Scholar 

  • Liljestrom P, Lusa S, Huylebroeck D, Garoff H (1991). In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 65: 4107–4113.

    CAS  PubMed  Google Scholar 

  • Ludlow M, Duprex WP, Cosby SL, Allen IV, McQuaid S (2008). Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol 34: 424–434

    Article  CAS  PubMed  Google Scholar 

  • Lulla V, Merits A, Sarin P, Kaariainen L, Keranen S, Ahola T (2006). Identification of mutations causing temperature-sensitive defects in Semliki Forest virus RNA synthesis. J Virol 80: 3108–3111.

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU (2003). Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther 7: 202–209.

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB, Buchmeier MJ (1982). Restricted expression of viral glycoprotein in cells of persistently infected mice. Nature 300: 360–362.

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, Scallan MF, Dyson H, Fazakerley JK (1997). Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J Neuro Virol 3: 38–48.

    CAS  Google Scholar 

  • Pathak S, Webb HE (1983). Semliki Forest virus multiplication in oligodendrocytes in mouse-brain with reference to demyelination. J Physiol (Lond), 339, 17.

    Google Scholar 

  • Pusztai R, Gould E, Smith H (1971). Infection pattern in mice of an avirulent and virulent strain of Semliki Forest virus. Br J Exp Pathol 52: 669–677.

    CAS  PubMed  Google Scholar 

  • Ryan MD, King AM, Thomas GP (1991). Cleavage of foot- and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72 (Pt 11): 2727–2732.

    Article  CAS  PubMed  Google Scholar 

  • Salonen A, Vasiljeva L, Merits A, Magden J, Jokitalo E, Kaariainen L (2003). Properly folded nonstructural polyprotein directs the semliki forest virus replication complex to the endosomal compartment. J Virol 77: 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  • Scallan MF, Fazakerley JK (1999). Aurothiolates enhance the replication of Semliki Forest virus in the CNS and the exocrine pancreas. J NeuroVirol 5: 392–400.

    Article  CAS  PubMed  Google Scholar 

  • Schoneboom BA, Fultz MJ, Miller TH, McKinney LC, Grieder FB (1999). Astrocytes as targets for Venezuelan equine encephalitis virus infection. J NeuroVirol 5: 342–354.

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg EM, Suomalainen M, Garoff H (1994). A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Bio-Technology 12: 1127–1131.

    CAS  PubMed  Google Scholar 

  • Strauss JH, Strauss EG (1994). The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491–562.

    CAS  PubMed  Google Scholar 

  • Tamberg N, Lulla V, Fragkoudis R, Lulla A, Fazakerley JK, Merits A (2007). Insertion of EGFP into the replicase gene of Semliki Forest virus results in a novel, genetically stable marker virus. J Gen Virol 88: 1225–1230.

    Article  CAS  PubMed  Google Scholar 

  • Tarbatt CJ, Glasgow GM, Mooney DA, Sheahan BJ, Atkins GJ (1997). Sequence analysis of the avirulent, demyelinating A7 strain of Semliki Forest virus. J Gen Virol 78: 1551–1557.

    CAS  PubMed  Google Scholar 

  • Thomas JM, Klimstra WB, Ryman KD, Heidner HW (2003). Sindbis virus vectors designed to express a foreign protein as a cleavable component of the viral structural polyprotein. J Virol 77: 5598–5606.

    Article  CAS  PubMed  Google Scholar 

  • Tuittila M, Hinkkanen AE (2003). Amino acid mutations in the replicase protein nsP3 of Semliki Forest virus cumulatively affect neurovirulence. J Gen Virol 84: 1525–1533.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Fazakerley.

Additional information

This work was funded by the EU SFVECTORS (www.sfvectors.ed.ac.uk) programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragkoudis, R., Tamberg, N., Siu, R. et al. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. Journal of NeuroVirology 15 (Suppl 1), 57–70 (2009). https://doi.org/10.1080/13550280802482583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280802482583

Keywords

Navigation