Skip to main content

Advertisement

Log in

Morphine enhances Tat-induced activation in murine microglia

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

There is increasing evidence that opiates accelerate the pathogenesis and progression of acquired immunodeficiency syndrome (AIDS), as well as the incidence of human immunodeficiency virus (HIV) encephalitis (HIVE), a condition characterized by inflammation, leukocyte infiltration, and microglial activation. The mechanisms, by which the HIV-1 transactivating protein Tat and opioids exacerbate microglial activation, however, are not fully understood. In the current study, we explored the effects of morphine and HIV-1 Tat1–72 on the activation of mouse BV-2 microglial cells and primary mouse microglia. Both morphine and Tat exposure caused up-regulation of the chemokine receptor CCR5, an effect blocked by the opioid receptor antagonist naltrexone. Morphine in combination with Tat also induced morphological changes in the BV-2 microglia from a quiescent to an activated morphology, with a dramatic increase in the expression of the microglial activation marker CD11b, as compared with cells exposed to either agent alone. In addition, the mRNA expression of inducible nitric oxide synthase (iNOS), CD40 ligand, Interferon-gamma-inducible protein 10 (IP-10), and the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and IL-6, which were elevated with Tat alone, were dramatically enhanced with Tat in the presence of morphine. In summary, these findings shed light on the cooperative effects of morphine and HIV-1 Tat on both microglial activation and HIV coreceptor up-regulation, effects that could result in exacerbated neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler H, Peterhans E, Jungi TW (1994). Generation and functional characterization of bovine bone marrow-derived macrophages. Vet Immunol Immunopathol 41: 211–227.

    Article  CAS  PubMed  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999). Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Bell JE, Donaldson YK, Lowrie S, McKenzie CA, Elton RA, Chiswick A, Brettle RP, Ironside JW, Simmonds P (1996). Influence of risk group and zidovudine therapy on the development of HIV encephalitis and cognitive impairment in AIDS patients. AIDS 10: 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Bokhari SM, Kim KJ, Pinson DM, Slusser J, Yeh HW, Parmely MJ (2008). NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infect Immun 76: 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Bonwetsch R, Croul S, Richardson MW, Lorenzana C, Del Valle L, Sverstiuk AE, Amini S, Morgello S, Khalili K, Rappaport J (1999). Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J NeuroVirol 5: 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Budka H (1991). The definition of HIV-specific neuropathology. Acta Pathol Jpn 41: 182–191.

    CAS  PubMed  Google Scholar 

  • Chao CC, Hu S, Shark KB, Sheng WS, Gekker G, Peterson PK (1997). Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther 281: 998–1004.

    CAS  PubMed  Google Scholar 

  • Chen AC, LaForge KS, Ho A, McHugh PF, Kellogg S, Bell K, Schluger RP, Leal SM, Kreek MJ (2002). Potentially functional polymorphism in the promoter region of prodynorphin gene may be associated with protection against cocaine dependence or abuse. Am J Med Genet 114: 429–435.

    Article  PubMed  Google Scholar 

  • D’Aversa TG, Weidenheim KM, Berman JW (2002). CD40-CD40L interactions induce chemokine expression by human microglia: implications for human immunodeficiency virus encephalitis and multiple sclerosis. Am J Pathol 160: 559–567.

    PubMed  Google Scholar 

  • D’Aversa TG, Yu KO, Berman JW (2004). Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J NeuroVirol 10: 86–97.

    Article  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8: 752–758.

    Article  CAS  PubMed  Google Scholar 

  • de Goer de Herve MG, Delfraissy JF, Taoufik Y (2001). Following direct CD40 activation, human primary microglial cells produce IL-12 p40 but not bioactive IL-12 p70. Cytokine 14: 88–96.

    Article  PubMed  Google Scholar 

  • Donahoe RM, Vlahov D (1998). Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol 83: 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Fetler L, Amigorena S (2005). Neuroscience. Brain under surveillance: the microglia patrol. Science 309: 392–393.

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Smith T, Rappaport J (2005). Evolving paradigms in the pathogenesis of HIV-1-associated dementia. Expert Rev Mol Med 7: 1–26.

    Article  PubMed  Google Scholar 

  • Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, Montine TJ, Moller T, Morrison RS (2004). HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18: 1141–1143.

    CAS  PubMed  Google Scholar 

  • Ghafouri M, Amini S, Khalili K, Sawaya BE (2006). HIV-1 associated dementia: symptoms and causes. Retrovirology 3: 28.

    Article  PubMed  Google Scholar 

  • Glass JD, Wesselingh SL, Selnes OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999). Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22: 219–240.

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi LM, Martino GV, Franciotta DM, Brustia R, Castagna A, Pristera R, Lazzarin A (1991). Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol 29: 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK (2002). Microglia as a source and target of cytokines. Glia 40: 140–155.

    Article  PubMed  Google Scholar 

  • Kong LY, Wilson BC, McMillian MK, Bing G, Hudson PM, Hong JS (1996). The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 172: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Nath A, Mattson MP (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154: 276–288.

    Article  CAS  PubMed  Google Scholar 

  • Ling EA, Wong WC (1993). The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7: 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Du L, Kong LY, Hudson PM, Wilson BC, Chang RC, Abel HH, Hong JS (2000). Reduction by naloxone of lipopolysaccharide-induced neurotoxicity in mouse cortical neuron-glia co-cultures. Neuroscience 97: 749–756.

    Article  CAS  PubMed  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996). Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioidreceptor gene. Nature 383: 819–823.

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318.

    Article  CAS  PubMed  Google Scholar 

  • Pessac B, Godin I, Alliot F (2001). [Microglia: origin and development.] Bull Acad Natl Med 185: 337–346; discussion 346–347.

    CAS  PubMed  Google Scholar 

  • Pottler M, Zierler S, Kerschbaum HH (2006). An artificial three-dimensional matrix promotes ramification in the microglial cell-line, BV-2. Neurosci Lett 410: 137–140.

    Article  PubMed  Google Scholar 

  • Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004). Role of microglia in central nervous system infections. Clin Microbiol Rev 17: 942–964; table of contents.

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka BB, Fox CA, Thompson RC, Meng F, Watson SJ, Akil H (1995). Primary astroglial cultures derived from several rat brain regions differentially express mu, delta and kappa opioid receptor mRNA. Brain Res Mol Brain Res 34: 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz M, Nordt T, Bode C, Peter K (2002). The GP IIb/IIIa inhibitor abciximab (c7E3) inhibits the binding of various ligands to the leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2). Thromb Res 107: 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Steele AD, Henderson EE, Rogers TJ (2003). Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 309: 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Stiene-Martin A, Zhou R, Hauser KF (1998). Regional, developmental, and cell cycle-dependent differences in mu, delta, and kappa-opioid receptor expression among cultured mouse astrocytes. Glia 22: 249–259.

    Article  CAS  PubMed  Google Scholar 

  • UNAIDS. (2006). report on the global aids epidemic. Geneva: UNAIDS; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa J. Buch.

Additional information

This work was supported by grants MH62969, RR016443, MH068212, DA020392, and DA024442 from the National Institutes of Health (to S.M.B.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokhari, S.M., Yao, H., Bethel-Brown, C. et al. Morphine enhances Tat-induced activation in murine microglia. Journal of NeuroVirology 15, 219–228 (2009). https://doi.org/10.1080/13550280902913628

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280902913628

Keywords

Navigation