Skip to main content

Advertisement

Log in

Cell-specific temporal infection of the brain in a simian immunodeficiency virus model of human immunodeficiency virus encephalitis

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Increasing evidence supports early brain infection by human immunodeficiency virus (HIV). Definitive temporal studies determining when and within which brain cells viral DNA is present are lacking. This study utilized simian immunodeficiency virus (SIV)-infected macaques sacrificed at days 10, 21, 56, and 84 post inoculation. Laser-microdissection isolated pure perivascular macrophage, parenchymal microglia, and astrocyte populations. Nested polymerase chain reaction (PCR) and sequencing determined the presence and characteristics of SIV V3 and V1 env DNA from each population. At day 10, SIV DNA was detected in perivascular macrophage and astrocytes but not parenchymal microglia. gp41 expression was restricted to perivascular macrophage. At day 21, SIV DNA was not detected in any cell type. At day 56, SIV DNA was detectable in perivascular macrophage from one of two macaques, with no gp41 expression detected. At day 84 (morphologic and clinical encephalitis), SIV DNA was detected in all cell types, gp41 was only detected in perivascular macrophage and parenchymal microglia. The neurovirulent molecular clone, SIV/17E-Fr, was the only genotype identified in the brain cell populations. Early, productive brain SIV infection was transient and restricted to trafficking perivascular macrophage. During the nonencephalitic stage, there was a period of time when no SIV DNA could be detected in the brain cell populations. SIV was then seen to reenter the brain via infected perivascular macrophage, leading to productive infection of brain parenchymal macrophage/microglia with a terminal phase of encephalitis. These data challenge current notions of a HIV reservoir within latently infected, semipermanent brain cells and has significant implications for the timing and design of therapies to prevent HIV encephalitis (HIVE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2005). Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Neuropathol Appl Neurobiol 31: 325–338.

    Article  CAS  PubMed  Google Scholar 

  • Babas T, Dewitt JB, Mankowski JL, Tarwater PM, Clements JE, Zink MC (2006). Progressive selection for neurovirulent genotypes in the brain of SIV-infected macaques. AIDS 20: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Babas T, Munoz D, Mankowski JL, Tarwater PM, Clements JE, Zink MC (2003). Role of microglial cells in selective replication of simian immunodeficiency genotypes in the brain. J Virol 77: 208–216.

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R (2001). Turnover of rat brain perivascular cells. Exp Neurol 168: 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Bell JE (2004). An update on the neuropathology of HIV in the HAART era. Histopathology 45: 549–559.

    Article  CAS  PubMed  Google Scholar 

  • Bell JE, Anthony IC, Simmonds P (2006). Impact of HIV on regional and cellular organisation of the brain. Curr HIV Res 4: 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Bonavia A, Bullock BT, Gisselman KM, Margulies BJ, Clements JE (2005). A single amino acid change and truncated TM are sufficient for simian immunodeficiency virus to enter cells using CCR5 in a CD4-independent pathway. Virology 341: 12–23.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti L, Hyrtel M, Maire MA, Vazeux R, Dormont D, Montagnier L, Hurtel B (1991). Early viral replication in the brain of SIV-infected Rhesus monkeys. Am J Path 139: 1273–1280.

    CAS  PubMed  Google Scholar 

  • Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, Thompson KA, Gabuzda D, McArthur JC, Pardo CA, Wesselingh SL (2006). Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissue. J NeuroVirol 12: 146–152.

    Article  PubMed  Google Scholar 

  • Clarke JN, Lake JA, Burrell CJ, Wesselingh SL, Gorry PR, Peng L (2006). Novel pathway of human immunodeficiency virus type 1 uptake and release in astrocytes. Virology 348: 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Clay CC, Rodrigues DS, Ho YS, Fallert BA, Janatpour K, Reinhart TA, Esser U (2007). Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J Virol 81: 12040–12048.

    Article  CAS  PubMed  Google Scholar 

  • Clements JE, Anderson MG, Zink MC, Joag SV, Narayan O (1994). The SIV model of AIDS encephalopathy. Role of neurotropic viruses in diseases. In: HIV, AIDS and the brain, Price RW, Perry SW (eds). New York: Raven Press. pp. 147–157.

    Google Scholar 

  • Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic Infection. J Infect Dis 186: 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Clements JE, Zink MC (1996). Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev 9: 100–117.

    CAS  PubMed  Google Scholar 

  • Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–53.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty MT, Hauer DA, Mankowski JL, Zink MC, Clements JE (1997). Molecular and biological characterization of a neurovirulent molecular clone of simian immunodeficiency virus. J Virol 71: 5790–5798.

    CAS  PubMed  Google Scholar 

  • Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D (2005). Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49: 375–384.

    Article  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005). The neuropathogenesis of AIDS. Nat Rev Immunol 5: 69–81.

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Scaravilli F, Everall I, Chretien F, An S, Boche D, Adle-Biassette H, Wingertsmann L, Durigon M, Hurtrel B, Chiodi F, Bell JE, Lantos P (1996). Neuropathology of early HIV-1 infection. Brain Path 6: 1–15.

    Article  CAS  Google Scholar 

  • Hulette CM, Downey BT, Burger PC (1992). Macrophage markers in diagnostic neuropathology. Am J Surg Path 16: 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Iacono RF, Berria MI (1999). Cell differentiation increases astrocyte phagocytic activity. A quantitative analysis of both GFAP labeling and PAS-stained yeast cells. Medicina (Mex) 59: 171–175.

    CAS  Google Scholar 

  • Kalmar B, Kittel A, Lemmens R, Kornyei Z, Madarasz E (2001). Cultured astrocytes react to LPS with increased cyclooxygenase activity and phagocytosis. Neurochem Int 38: 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, Williams K (2006). CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 168: 822–834.

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW, Blakemore WF, Graaber MB (1997). Cellular pathology in the central nervous system. In: Greenfield’s neuropathology, Graham DI, Lantos PL (eds). New York: Oxford University Press. pp. 126–137.

    Google Scholar 

  • Laast VA, Pardo CA, Tarwater PM, Queen SE, Reinhart TA, Ghosh M, Adams RJ, Zink MC, Mankowski JL (2007). Pathogenesis of simian immunodeficiency virus-induced alterations in macaque trigeminal ganglia. J Neuropathol Exp Neurol 66: 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, Blum J, He JJ (2004). CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. J Virol 78: 4120–4133.

    Article  CAS  PubMed  Google Scholar 

  • Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Amedee AM, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink MC (1997). Pathogenesis of simian immunodeficiency virus encephalitis: viral determinants of neurovirulence. J Virol 71: 6055–6060.

    CAS  PubMed  Google Scholar 

  • Mankowski JL, Spelman JP, Ressetar HG, Strandberg JD, Laterra J, Carter DL, Clements JE, Zink MC (1994). Neurovirulent simian immunodeficiency virus replicates productively in endothelial cells of the central nervous system in vivo and in vitro. J Virol 68: 8202–8208.

    CAS  PubMed  Google Scholar 

  • Overholser ED, Coleman GD, Bennett JL, Casaday RJ, Zink MC, Barber SA, Clements JE (2003). Expression of simian immunodeficiency virus Nef in astorcytes during acute and terminal infection and requirement of Nef for optimal replication of neurovirulent SIV in vitro. J Virol 77: 6855–6866.

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C (1999). HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. J NeuroVirol 5: 670–677.

    Article  CAS  PubMed  Google Scholar 

  • Rothenaigner I, Kramer S, Ziegler M, Wolff H, Kleinschmidt A, Brack-Werner R (2007). Long-term HIV-1 infection of neural progenitor populations. AIDS 21: 2271–2281.

    Article  PubMed  Google Scholar 

  • Ryzhova EV, Crino P, Shawver L, Westmoreland SV, Lackner AA, Gonzalez-Scarano F (2002). Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297: 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Sacktor N (2002). The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J NeuroVirol 8: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Schuetze K, Becker I, Becker KF, Thalhammer S, Strack R, Heckl WM, Bohm M, Posl H (1997). Cut out or poke in—the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. Genet Anal 14: 1–8.

    CAS  Google Scholar 

  • Schwartz L, Civitello L, Dunn-Pirio A, Ryschkewitsch S, Berry E, Cavert W, Kinzel N, Lawrence DMP, Hazra R, Major EO (2007). Evidence of human immunodeficiency virus type 1 infection of nestin-positive neural progenitors in archival pediatric brain tissue. J NeuroVirol 13: 274–283.

    Article  PubMed  Google Scholar 

  • Sieczkarski SB, Whittaker GR (2002). Dissecting virus entry via endocytosis. J Gen Virol 83: 1535–1545.

    CAS  PubMed  Google Scholar 

  • Speth C, Diericha MP, Sopperb S (2005). HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol Immunol 42: 213–228.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Bourdette DN, Corless C, Vandenbark AA, Offner H, Jones RE (2001). T lymphocytes promote the development of bone marrow-derived APC in the central nervous system. J Immunol 166: 370–376.

    CAS  PubMed  Google Scholar 

  • Thompson KA, Churchill MJ, Gorry PR, Stervjoski J, Oerlichs RB, Wesselingh SL, McLean CA (2004). Astrocyte specific viral strains in HIV dementia. Ann Neurol 56: 873–877.

    Article  CAS  PubMed  Google Scholar 

  • Thompson KA, McArthur JC, Wesselingh SL (2001). Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 49: 745–752.

    Article  CAS  PubMed  Google Scholar 

  • Trillo-Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, Belem P, Sadiq S, Morgello S, Sharer L, Volsky DJ (2003). Detection of HIV-1 DNA in microglia/macrophages, astroyctes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13: 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193: 905–916.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Amedee AM, Mankowski JL, Craig L, Didier PJ, Carter DL, Munoz A, Murphey-Corb M, Clements JE (1997). Pathogenesis of SIV encephalitis. Selection and replication of neurovirulent SIV. Am J Pathol 151: 793–803.

    CAS  PubMed  Google Scholar 

  • Zink MC, Spelman JP, Robinson RB, Clements JE (1998). SIV infection of macaques—modeling the progression to AIDS dementia. J NeuroVirol 4: 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 73: 10480–10488.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Thompson.

Additional information

This work was supported by an Australian National Health and Medical Research Council (NHMRC) grant (281215) to C.A.M. and S.L.W. K.A.T. was supported by a NHMRC Biomedical Postgraduate Scholarship (194342) and is currently a recipient of a NHMRC Peter Doherty Post-Doctoral Fellowship (415006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, K.A., Varrone, J.J., Jankovic-Karasoulos, T. et al. Cell-specific temporal infection of the brain in a simian immunodeficiency virus model of human immunodeficiency virus encephalitis. Journal of NeuroVirology 15, 300–311 (2009). https://doi.org/10.1080/13550280903030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280903030125

Keywords

Navigation