Skip to main content

Advertisement

Log in

Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

NMDA receptors modulate important cerebral processes such as synaptic plasticity, long-term potentiation, learning and memory, etc. NMDA receptors in cerebellum have specific characteristics that make their function and modulation different from those of NMDA receptors in other brain areas. In this and the accompanying review we summarize the information available on the modulation of NMDA receptors in cerebellum. We review the properties of the NMDA receptor that modulate its function: subunit composition, post-translational modifications and synaptic localization. NMDA receptors are heteromeric ligand-gated ion channels assembled from two families of subunits, NR1 and NR2. There are at least eight splicing variant isoforms of the NR1 subunit and four types of NR2 subunits: NR2A, NR2B, NR2C and NR2D. NMDA receptors with different subunit composition or different splice variants of NR1 subunit have different properties. The expression of the different subunits and splicing variants varies during development. Two special characteristics of NMDA receptors in cerebellum that do not occur in other brain areas are the enrichment in the NR2C subunit and in the splice variant NR1b. As a consequence of these and other factors the pharmacology of NMDA receptors is also different in cerebellum than in other brain areas. The function and localization of NMDA receptors is also modulated by postranslational modifications including phosphorylation, glycosylation and nytrosylation. NMDA receptors are phosphorylated in serines of both NR1 and NR2 subunits and in tyrosines of NR2 subunits.

Another factor modulating NMDA receptors function is the synaptic localization. The trafficking and clustering of NMDA receptors is modulated by phosphorylation and by interaction with other proteins. The signaling pathways and physiological modulators regulating NMDA receptor function as well as the role of these receptors in motor learning and coordination are reviewed in an accompanying article

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audinat E, Lambolez B, Rossier J, Crepel F. Activitydependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur J Neurosci. 1994;6:1792–800.

    Article  PubMed  CAS  Google Scholar 

  2. Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG. NMDA-receptor channel diversity in the developing cerebellum. Nature. 1994;368:335–9.

    Article  PubMed  CAS  Google Scholar 

  3. Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci. 2000;20:5899–905.

    PubMed  CAS  Google Scholar 

  4. Takahashi T, Feldmeyer D, Suzuki N, Onodera K, CullCandy SG, Sakimura K, Mishina M. Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci. 1996;16:4376–82.

    PubMed  CAS  Google Scholar 

  5. Schlett K, Pieri I, Metzger F, Marchetti L, Steigerwald F, Dere E, Kirilly D, Tarnok K, Barabas B, Kis VA, Gerspach J, Huston J, Pfizenmaier K, Kohr G, Eisel UL. Long-term NR2B expression in the cerebellum alters granule cell development and leads to NR2A down-regulation and motor deficits. Mol Cell Neurosci. 2004;27:215–26.

    PubMed  CAS  Google Scholar 

  6. Losi G, Prybylowski K, Fu Z, Luo J, Wenthold RJ, Vicini S. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol. 2003;548(Pt. 1):21–9.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuda K, Kamiya Y, Matsuda S, Yuzaki M. Cloning and characterization of a novel NMDA receptor subunit NR3B: A dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res. 2002;100:43–52.

    Article  PubMed  CAS  Google Scholar 

  8. Prybylowski K, Rumbaugh G, Wolfe BB, Vicini S. Increased exon 5 expression alters extrasynaptic NMDA receptors in cerebellar neurons. J Neurochem. 2000;75(3):1140–6.

    Article  PubMed  CAS  Google Scholar 

  9. Rumbaugh G, Prybylowski K, Wang JF, Vicini S. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol. 2000;83(3):1300–6.

    PubMed  CAS  Google Scholar 

  10. Vallano ML, Beaman-Hall CM, Benmansour S. Ca2+ and pH modulate alternative splicing of exon 5 in NMDA receptor subunit 1. Neuroreport. 1999;10:3659–64.

    Article  PubMed  CAS  Google Scholar 

  11. Prybylowski KL, Wolfe BB. Developmental differences in alternative splicing of the NR1 protein in rat cortex and cerebellum. Brain Res Dev Brain Res. 2000;123(2):143–50.

    Article  PubMed  CAS  Google Scholar 

  12. Widdowson PS, Trainor A, Lock EA. NMDA receptors in rat cerebellum and forebrain: Subtle differences in pharmacology and modulation. J Neurochem. 1995;64:651–61.

    PubMed  CAS  Google Scholar 

  13. Stone TW. Subtypes of NMDA receptors. Gen Pharmacol. 1993;24:825–32.

    PubMed  CAS  Google Scholar 

  14. Monaghan DT, Beaton JA. Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol. 1991;194:123–5.

    Article  PubMed  CAS  Google Scholar 

  15. Yoneda Y, Ogita K. Heterogeneity of the N-methyl-Daspartate receptor ionophore complex in rat brain, as revealed by ligand binding techniques. J Pharmacol Exp Ther. 1991;259:86–96.

    PubMed  CAS  Google Scholar 

  16. Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-Daspartate receptor NR1 subunit using phosphorylation sitespecific antibodies. J Biol Chem. 1997;272:5157–66.

    Article  PubMed  CAS  Google Scholar 

  17. S’anchez-P’erez AM, Felipo V. Serines 890 and 896 of NMDA receptor subunit NR1 are differentially phosphorylated by protein kinase C isoforms. Neurochemistry International. 2005.

  18. Llansola M, Sanchez-Perez AM, Montoliu C, Felipo V. Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture. J Neurochem. 2004;91:591–9.

    Article  PubMed  CAS  Google Scholar 

  19. Grant ER, Bacskai BJ, Anegawa NJ, Pleasure DE, Lynch DR. Opposing contributions of NR1 and NR2 to protein kinase C modulation of NMDA receptors. J Neurochem. 1998;71:1471–81.

    PubMed  CAS  Google Scholar 

  20. Pizzi M, Boroni F, Bianchetti KM, Memo M, Spano P. Reversal of glutamate excitotoxicity by activation of PKCassociated metabotropic glutamate receptors in cerebellar granule cells relies on NR2C subunit expression. Eur J Neurosci. 1999;11:2489–96.

    Article  PubMed  CAS  Google Scholar 

  21. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 1996;271:31670–8.

    Article  PubMed  CAS  Google Scholar 

  22. Corsi L, Li JH, Krueger KE, Wang YH, Wolfe BB, Vicini S. Up-regulation of NR2B subunit of NMDA receptors in cerebellar granule neurons by Ca2+/calmodulin kinase inhibitor KN93. J Neurochem. 1998;70:1898–906.

    PubMed  CAS  Google Scholar 

  23. Gardoni F, Bellone C, Cattabeni F, Di Luca M. Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem. 2001;276(10):7609–13.

    Article  PubMed  CAS  Google Scholar 

  24. Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL. Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology. 2002;42(5):593–602.

    Article  PubMed  CAS  Google Scholar 

  25. Jin DH, Jung YW, Ko BH, Moon IS. Immunoblot analyses on the differential distribution of NR2A and NR2B subunits in the adult rat brain. Mol Cells. 1997;7:749–54.

    PubMed  CAS  Google Scholar 

  26. Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci. 2001;21(15):5546–58.

    PubMed  CAS  Google Scholar 

  27. Rostas JA, Brent VA, Voss K, Errington ML, Bliss TV, Gurd JW. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc Natl Acad Sci USA. 1996;93:10452–6.

    Article  PubMed  CAS  Google Scholar 

  28. Brose N, Gasic GP, Vetter DE, Sullivan JM, Heinemann SF. Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA R1. J Biol Chem. 1993;268:22663–71.

    PubMed  CAS  Google Scholar 

  29. Dunah AW, Yasuda RP, Wang YH, Luo J, Davila-Garcia M, Gbadegesin M, Vicini S, Wolfe BB. Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody. J Neurochem. 1996;67:2335–45.

    Article  PubMed  CAS  Google Scholar 

  30. Chazot PL, Cik M, Stephenson FA. An investigation into the role of N-glycosylation in the functional expression of a recombinant heteromeric NMDA receptor. Mol Membr Biol. 1995;12:331–7.

    Article  PubMed  CAS  Google Scholar 

  31. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci. 2000;3:15–21.

    Article  PubMed  CAS  Google Scholar 

  32. Bredt DS, Snyder SH. Nitric oxide mediates glutamatelinked enhancement of cGMP levels in the cerebellum. Proc Natl Acad.Sci USA. 1989;86:9030–3.

    Article  PubMed  CAS  Google Scholar 

  33. Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 1999;274:27467–73.

    Article  PubMed  CAS  Google Scholar 

  34. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995;269:1737–40.

    Article  PubMed  CAS  Google Scholar 

  35. Ziff EB. Enlightening the postsynaptic density. Neuron. 1997;19:1163–74.

    Article  PubMed  CAS  Google Scholar 

  36. Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997;385:439–42.

    Article  PubMed  CAS  Google Scholar 

  37. Rao A, Craig AM. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron. 1997;19:801–12.

    Article  PubMed  CAS  Google Scholar 

  38. Brenman JE, Topinka JR, Cooper EC, McGee AW, Rosen J, Milroy T, Ralston HJ, Bredt DS. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J Neurosci. 1998;18:8805–13.

    PubMed  CAS  Google Scholar 

  39. Bassand P, Bernard A, Rafiki A, Gayet D, Khrestchatisky M. Differential interaction of the tSXV motifs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97. Eur J Neurosci. 1999;11:2031–43.

    Article  PubMed  CAS  Google Scholar 

  40. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA. 2002;99(21):13902–7.

    Article  PubMed  CAS  Google Scholar 

  41. Lee S, Maler L, Dunn RJ. Differential expression of the PSD-95 gene family in electrosensory neurons. J Comp Neurol. 2000;426(3):429–40.

    Article  PubMed  CAS  Google Scholar 

  42. Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci. 1998;18:2017–27.

    PubMed  CAS  Google Scholar 

  43. Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science. 1999;285:93–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci. 1998;11:161–72.

    Article  PubMed  CAS  Google Scholar 

  45. Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N, Matsumine A, Kobayashi S, Toyoshima K, Akiyama T. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells. 1997;2:415–24.

    Article  PubMed  CAS  Google Scholar 

  46. Abe M, Fukaya M, Yagi T, Mishina M, Watanabe M, Sakimura K. NMDA receptor GluRepsilon/NR2 subunits are essential for postsynaptic localization and protein stability of GluRzeta1/NR1 subunit. J Neurosci. 2004;24(33): 7292–304.

    Article  PubMed  CAS  Google Scholar 

  47. Prybylowski K, Fu Z, Losi G, Hawkins LM, Luo J, Chang K, Wenthold RJ, Vicini S. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci. 2002;22(20):8902–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Felipo.

Additional information

Marta Llansola and Ana Sanchez-Perez have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llansola, M., Sanchez-Perez, A., Cauli, O. et al. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 4, 154–161 (2005). https://doi.org/10.1080/14734220510007996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220510007996

Key words

Navigation