Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters

, , , , , and

© 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation V. Mennella et al 1998 ApJ 496 1058 DOI 10.1086/305415

0004-637X/496/2/1058

Abstract

We have measured the absorption coefficient per unit mass of cosmic dust analog grains, crystalline fayalite and forsterite, amorphous fayalite, and two kinds of disordered carbon grains, between 20 μm and 2 mm over the temperature range 295-24 K. The results provide evidence of a significant dependence on temperature. The opacity systematically decreases with decreasing temperature; at 1 mm, it varies by a factor of between 1.9 and 5.8, depending on the material, from room temperature to 24 K. The variations are more marked for the amorphous grains. The wavelength dependence of the absorption coefficient is well fitted by a power law with exponent β that varies with temperature. For the two amorphous carbons, β(24 K) ~1.2 with increases of 24% and 50% with respect to the room-temperature values. A 50% increase is found for amorphous fayalite, characterized by β(24 K) = 2. A less pronounced change of β with temperature, 14% and 10%, is observed for crystalline forsterite, β(24 K) = 2.2, and fayalite, β(24 K) = 2.3, respectively. For amorphous fayalite grains, the millimeter opacity at 24 K is larger by a factor of ~4 than that of the crystalline counterpart. In addition, a temperature dependence of the infrared bands present in the spectrum of the two crystalline silicates is found. The features become more intense, sharpen, and shift to slightly higher frequencies with decreasing temperature. The results are discussed in terms of intrinsic far-infrared-millimeter absorption mechanisms. The linear dependence of the millimeter absorption on temperature suggests that two-phonon difference processes play a dominant role.

The absorption coefficients reported in this work can be useful in obtaining a more realistic simulation of a variety of astronomical data concerning dust at low temperatures and give hints to better identify its actual properties. In particular, they are used to discuss the origin of the diffuse far-infrared-millimeter interstellar dust emission spectrum. It is proposed that composite particles formed of silicate and amorphous carbon grains can reproduce the observations. The presence of these particles in the diffuse medium is consistent with the recent interstellar extinction model by Mathis.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/305415