Brought to you by:

The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyα Forest*

, , , , , , and

© 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Patrick McDonald et al 2000 ApJ 543 1 DOI 10.1086/317079

0004-637X/543/1/1

Abstract

A sample of eight quasars observed at high resolution and signal-to-noise ratio is used to determine the transmitted flux probability distribution function (TFPDF), and the power spectrum and correlation function of the transmitted flux in the Lyα forest, in three redshift bins centered at z = 2.41, 3.00, and 3.89. All the results are presented in tabular form, with full error covariance matrices, to allow for comparisons with any numerical simulations and with other data sets. The observations are compared with a numerical simulation of the Lyα forest of a ΛCDM model with Ω = 0.4, known to agree with other large-scale structure observational constraints. There is excellent agreement for the TFPDF if the mean transmitted flux is adjusted to match the observations. A small difference between the observed and predicted TFPDF is found at high fluxes and low redshift, which may be due to the uncertain effects of fitting the spectral continuum. Using the numerical simulation, we show how the flux power spectrum can be used to recover the initial power spectrum of density fluctuations. From our sample of eight quasars, we measure the amplitude of the mass power spectrum to correspond to a linear variance per unit ln k of Δ(k) = 0.72 ± 0.09 at k = 0.04(km s-1)-1 and z = 3, and the slope of the power spectrum near the same k to be np = -2.55 ± 0.10 (statistical error bars). The results are statistically consistent with those of Croft et al., although our value for the rms fluctuation is lower by a factor of 0.75. For the ΛCDM model we use, the implied primordial slope is n = 0.93 ± 0.10, and the normalization is σ8 = 0.68 + 1.16(0.95 - n) ± 0.04.

Export citation and abstract BibTeX RIS

Footnotes

  • The observations were made at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology and the University of California; it was made possible by the generous support of the W. M. Keck Foundation.

Please wait… references are loading.
10.1086/317079