Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1*

, , , , , , , , , , , , , , , , and

Copyright is not claimed for this article. Printed in U.S.A.
, , Citation Emeric Le Floc'h et al 2005 ApJ 632 169 DOI 10.1086/432789

0004-637X/632/1/169

Abstract

We analyze a sample of ~2600 Spitzer MIPS 24 μm sources brighter than ~80 μJy and located in the Chandra Deep Field-South to characterize the evolution of the comoving infrared (IR) energy density of the universe up to z ~ 1. Using published ancillary optical data, we first obtain a nearly complete redshift determination for the 24 μm objects associated with R ≲ 24 mag counterparts at z ≲ 1. These sources represent ~55%-60% of the total MIPS 24 μm population with f24 μm ≳ 80 μJy, the rest of the sample likely lying at higher redshifts. We then determine an estimate of their total IR luminosities using various libraries of IR spectral energy distributions. We find that the 24 μm population at 0.5 ≲ z ≲ 1 is dominated by "luminous infrared galaxies" (i.e., 1011 LLIR ≤ 1012 L), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically selected galaxies. A significant number of fainter sources (5 × 1010 LLIR ≤ 1011 L) are also detected at similar distances. We finally derive 15 μm and total IR luminosity functions (LFs) up to z ~ 1. In agreement with the previous results from the Infrared Space Observatory (ISO) and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with look-back time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity [L ∝ (1 + z), ϕ ∝ (1 + z)]. A significant steepening of the faint-end slope of the IR luminosity function is also unlikely, as it would overproduce the faint 24 μm source number counts. Our results imply that the comoving IR energy density of the universe evolves as (1 + z)3.9±0.4 up to z ~ 1 and that galaxies luminous in the infrared (i.e., LIR ≥ 1011 L) are responsible for 70% ± 15% of this energy density at z ~ 1. Taking into account the contribution of the UV luminosity evolving as (1 + z)~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z ~ 0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24 μm fluxes into luminosities.

Export citation and abstract BibTeX RIS

Footnotes

  • Based on observations made with Spitzer, operated by the Jet Propulsion Laboratory under NASA contract 1407.

Please wait… references are loading.
10.1086/432789