Fabrication of textured (RE = Y, Gd) composites by infiltration and growth of preforms by liquid phases

and

Published under licence by IOP Publishing Ltd
, , Citation E Sudhakar Reddy and T Rajasekharan 1998 Supercond. Sci. Technol. 11 523 DOI 10.1088/0953-2048/11/5/014

0953-2048/11/5/523

Abstract

A process for the fabrication of high-quality and near-net-shaped superconducting specimens of (Y-123) with uniformly distributed fine (Y-211) is discussed. The process involves the fabrication of 211 preforms by conventional ceramic routes such as uniaxial and isostatic pressing, injection moulding and slip casting, and pressureless infiltration basically from a reservoir containing liquid phases. A compact of 123 or 123 rich in liquid phases(s), acting as a source of liquid phases, is placed in contact with the 211 preform, and heated above the peritectic temperature of 123. The liquid from the source compact infiltrates the 211 filler and the peritectic reaction occurring between the preform material (211) and the matrix (liquid phases) during slow cooling from the peritectic temperature results in the growth of 123 with uniformly distributed fine 211 particles. We have also demonstrated that the present process can be extended to the fabrication of other rare earth (RE) superconductors where a solid solution of the kind occurs due to comparable size of the RE and Ba atoms, by choosing the RE = Gd system as an example. Herein the advantages and bounds of the process are reviewed; the effect of various cooling rates on the growth kinetics of 123 and the resulting macro- and microstructures are discussed. Fabrication of composites containing fine and very uniformly distributed Ag is also demonstrated by the process. Comparisons are made between the characteristics of the samples produced in the present process and the existing melt texturing process. The utility of the process is demonstrated by the fabrication of a three-dimensional component - a hollow cylinder.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0953-2048/11/5/014