Brought to you by:

SQUID-based instrumentation for ultralow-field MRI

, , , , and

Published 18 October 2007 IOP Publishing Ltd
, , Citation Vadim S Zotev et al 2007 Supercond. Sci. Technol. 20 S367 DOI 10.1088/0953-2048/20/11/S13

0953-2048/20/11/S367

Abstract

Magnetic resonance imaging at ultralow fields (ULF MRI) is a promising new imaging method that uses SQUID sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at a microtesla-range measurement field. In this work, a seven-channel SQUID system designed for simultaneous 3D ULF MRI and magnetoencephalography (MEG) is described. The system includes seven second-order SQUID gradiometers characterized by magnetic field resolutions of 1.2–2.8 fT Hz−1/2. It is also equipped with five sets of coils for 3D Fourier imaging with pre-polarization. Essential technical details of the design are discussed. The system's ULF MRI performance is demonstrated by multi-channel 3D images of a preserved sheep brain acquired at 46 µT measurement field with pre-polarization at 40 mT. The imaging resolution is 2.5 mm × 2.5 mm × 5 mm. The ULF MRI images are compared to images of the same brain acquired using conventional high-field MRI. Different ways to improve imaging SNR are discussed.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0953-2048/20/11/S13