EDITORIAL

Sensors and sensing systems

and

Published under licence by IOP Publishing Ltd
, , Citation Richard Dewhurst and Gui Yun Tian 2008 Meas. Sci. Technol. 19 020101 DOI 10.1088/0957-0233/19/2/020101

0957-0233/19/2/020101

Abstract

Sensors are very important for measurement science and technology. They serve as a vital component in new measurement techniques and instrumentation systems. Key qualities of a good sensor system are high resolution, high reliability, low cost, appropriate output for a given input (good sensitivity), rapid response time, small random error in results, and small systematic error. Linearity is also useful, but with the advent of lookup tables and software, it is not as important as it used to be.

In the last several years, considerable effort around the world has been devoted to a wide range of sensors from nanoscale sensors to sensor networks. Collectively, these vast and multidisciplinary efforts are developing important technological roadmaps to futuristic sensors with new modalities, significantly enhanced effectiveness and integrated functionality (data processing, computation, decision making and communications). When properly organized, they will have important relevance to life science and security applications, e.g. the sensing and monitoring of chemical, biological, radiological and explosive threats.

A special feature in this issue takes a snapshot of some recent developments that were first presented at an international conference, the 2007 IEEE International Conference on Networking, Sensing and Control (ICNSC). The conference discussed recent developments, from which a few papers have since been brought together in this special feature.

Gas sensing for environmental monitoring remains a topical subject, and two papers deal with this issue. One is concerned with the exploitation of nanostructured Au-doped cobalt oxyhydroxide-based carbon monoxide sensors for fire detection at its earlier stages (Zhuiykov and Dowling), whilst another examines the role of oxygen in high temperature hydrogen sulfide detection using MISiC sensors (Weng et al). Again for environmental monitoring, another paper deals with accurate sound source localization in a reverberant environment using multiple acoustic sensors (Atmoko et al). Not only is gaseous monitoring important, there are particular difficulties when it comes to the continuous monitoring of solids by non-destructive evaluation techniques. Examples of potential solutions for specialist applications are sensors for the detection and measurement of thin dielectric layers using reflection of frequency-scanned millimetre electromagnetic waves (Bowring et al), and an electrostatic sensor for velocity measurements of pneumatically conveyed solid particles (Xu et al). For potential medical applications, position measurement of internal organs is an on-going challenge. Tracking of internal organ motion with a six degree-of-freedom MEMS sensor is discussed by Bandala and Joyce.

We hope that these papers provide an insight into exciting developments that continue to take place in the field of sensors and control.

Export citation and abstract BibTeX RIS

10.1088/0957-0233/19/2/020101