From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB

, , , , and

Published 15 March 2012 Published under licence by IOP Publishing Ltd
, , Citation R. Giostri et al JCAP03(2012)027 DOI 10.1088/1475-7516/2012/03/027

1475-7516/2012/03/027

Abstract

We use type Ia supernovae (SN Ia) data in combination with recent baryonic acoustic oscillations (BAO) and cosmic microwave background (CMB) observations to constrain a kink-like parametrization of the deceleration parameter (q). This q-parametrization can be written in terms of the initial (qi) and present (q0) values of the deceleration parameter, the redshift of the cosmic transition from deceleration to acceleration (zt) and the redshift width of such transition (τ). By assuming a flat space geometry, qi = 1/2 and adopting a likelihood approach to deal with the SN Ia data we obtain, at the 68% confidence level (C.L.), that: zt = 0.56+0.13−0.10, τ = 0.47+0.16−0.20 and q0 = −0.31+0.11−0.11 when we combine BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve fitter. When in this combination we use the SALT2 fitter we get instead, at the same C.L.: zt = 0.64+0.13−0.07, τ = 0.36+0.11−0.17 and q0 = −0.53+0.17−0.13. Our results indicate, with a quite general and model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like cosmological models, while SALT2 favors ΛCDM-like ones. Progress in determining the transition redshift and/or the present value of the deceleration parameter depends crucially on solving the issue of the difference obtained when using these two light-curve fitters.

Export citation and abstract BibTeX RIS