The following article is Open access

Freeze-in production of sterile neutrino dark matter in U(1)B−L model

and

Published 27 September 2016 , , Citation Anirban Biswas and Aritra Gupta JCAP09(2016)044 DOI 10.1088/1475-7516/2016/09/044

This article is corrected by JCAP05(2017)A01

1475-7516/2016/09/044

Abstract

With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1)B−L model. The U(1)B−L model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W± decay can also be a dominant production mode of the sterile neutrino DM . To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1)B−L model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

Export citation and abstract BibTeX RIS

Article funded by SCOAP. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1475-7516/2016/09/044