Brought to you by:

Very massive tracers and higher derivative biases

, , , and

Published 2 January 2020 © 2020 IOP Publishing Ltd and Sissa Medialab
, , Citation Tomohiro Fujita et al JCAP01(2020)009 DOI 10.1088/1475-7516/2020/01/009

1475-7516/2020/01/009

Abstract

Most of the upcoming cosmological information will come from analyzing the clustering of the Large Scale Structures (LSS) of the universe through LSS or CMB observations. It is therefore essential to be able to understand their behavior with exquisite precision. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a consistent framework to make predictions for LSS observables in the mildly non-linear regime. In this paper we focus on biased tracers. We argue that in calculations at a given order in the dark matter perturbations, highly biased tracers will underperform because of their larger higher derivative biases. A natural prediction of the EFTofLSS is therefore that by simply adding higher derivative biases, highly massive tracers should perform comparably well. We implement this prediction for the halo-halo and the halo-matter power spectra at one loop, and the halo-halo-halo, halo-halo-matter, and halo-matter-matter bispectra at tree-level, and compare with simulations. We find good agreement with the prediction: at z=0, for all tracers, we are able to match the power spectra up to k≃0.28hMpc-1, as well as a small set of about 102 bispectra triangles up to k≃0.17hMpc-1. We also discuss the limitations of our study and some avenues to pursue to further establish these findings.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/1475-7516/2020/01/009