Paper The following article is Open access

Fast magnetic reconnection: The ideal tearing instability in classic, Hall, and relativistic plasmas.

, and

Published under licence by IOP Publishing Ltd
, , Citation E. Papini et al 2018 J. Phys.: Conf. Ser. 1031 012020 DOI 10.1088/1742-6596/1031/1/012020

1742-6596/1031/1/012020

Abstract

Magnetic reconnection is believed to be the driver of many explosive phenomena in Astrophysics, from solar to gamma-ray flares in magnetars and in the Crab nebula. However, reconnection rates from classic MHD models are far too slow to explain such observations. Recently, it was realized that when a current sheet gets sufficiently thin, the reconnection rate of the tearing instability becomes "ideal", in the sense that the current sheet destabilizes on the "macroscopic" Alfvenic timescales, regardless of the Lundquist number of the plasma. Here we present 2D compressible MHD simulations in the classical, Hall, and relativistic regimes. In particular, the onset of secondary tearing instabilities is investigated within Hall-MHD for the first time. In the frame of relativistic MHD, we summarize the main results from Del Zanna et al. [1]: the relativistic tearing instability is found to be extremely fast, with reconnection rates of the order of the inverse of the light crossing time, as required to explain the high-energy explosive phenomena.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1031/1/012020