The following article is Open access

Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at √s = 7 TeV

Published 19 September 2013 © CERN 2013 for the benefit of the CMS collaboration.
, , Citation 2013 JINST 8 P09009 DOI 10.1088/1748-0221/8/09/P09009

1748-0221/8/09/P09009

Abstract

The energy calibration and resolution of the electromagnetic calorimeter (ECAL) of the CMS detector have been determined using proton-proton collision data from LHC operation in 2010 and 2011 at a centre-of-mass energy of √s = 7 TeV with integrated luminosities of about 5\fbinv. Crucial aspects of detector operation, such as the environmental stability, alignment, and synchronization, are presented. The in-situ calibration procedures are discussed in detail and include the maintenance of the calibration in the challenging radiation environment inside the CMS detector. The energy resolution for electrons from Z-boson decays is better than 2% in the central region of the ECAL barrel (for pseudorapidity |η| < 0.8) and is 2–5% elsewhere. The derived energy resolution for photons from 125 GeV Higgs boson decays varies across the barrel from 1.1% to 2.6% and from 2.2% to 5% in the endcaps. The calibration of the absolute energy is determined from Z→e+e decays to a precision of 0.4% in the barrel and 0.8% in the endcaps.

Export citation and abstract BibTeX RIS

published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.

Please wait… references are loading.
10.1088/1748-0221/8/09/P09009