1887

Abstract

The entire genomic RNA of a Spanish isolate of pepper mild mottle virus (PMMV-S), a resistance-breaking virus in pepper, was cloned and sequenced and shown to be similar to other tobamoviruses in its genomic organization. It consisted of 6357 nucleotides (nt) and contained four open reading frames (ORFs) which encode a 126K protein and a readthrough 183K protein (nt 70 to 4908), a 28K protein (nt 4909 to 5682) and a 17.5K coat protein (nt 5685 to 6158). This is the first tobamovirus in which none of the ORFs overlap. Both its nucleic acid and predicted protein sequences were compared with the previously determined sequences of other tobamoviruses. The variations and similarities found and their relationship with the pathogenicity of this virus are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-12-2875
1991-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/12/JV0720122875.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-12-2875&mimeType=html&fmt=ahah

References

  1. Ahlquist P., Strauss E. G., Rice C. M., Strauss J. H., Haseloff J., Zimmern D. 1985; Sindbis virus proteins nsP1 and nsP2 contain homology to non-structural proteins from several RNA plant viruses. Journal of Virology 53:536–542
    [Google Scholar]
  2. Allison R. F., Janda M., Ahlquist P. 1989; Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromoviral evolution. Virology 172:321–330
    [Google Scholar]
  3. Alonso E., García-Luque I., Avila-Rincón M. J., Wicke B., Serra M. T., Díaz-Ruíz J. R. 1989; A tobamovirus causing heavy losses in protected pepper crops in Spain. Journal of Phytopathology 125:67–76
    [Google Scholar]
  4. Altschuh D., Lesk A. M., Bloomer A. C., Klug A. 1987; Correlation of co-ordinated amino acid substitutions with function in viruses related to TMV. Journal of Molecular Biology 193:693–707
    [Google Scholar]
  5. Avila-Rincón M. J., Ferrero M. L., Alonso E., García-Luque I., Díaz-Ruíz J. R. 1989; Nucleotide sequences of 5′ and 3′ non-coding regions of pepper mild mottle virus strain S RNA. Journal of General Virology 70:3025–3031
    [Google Scholar]
  6. Beier H., Barciszewska M., Krupp G., Mitnacht R., Gross H. J. 1984; UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs (Tyr) with suppressor activity from tobacco plants. EMBO Journal 3:351–356
    [Google Scholar]
  7. Boukema I. W., Jansen K., Hofman K. 1980; Strains of TMV and genes for resistance in Capsicum. Synopses 4th Meeting Eucarpia Capsicum Working Group (Wageningen) pp 44–48
    [Google Scholar]
  8. Citovsky V., Knorr D., Schuster G., Zambryski P. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647
    [Google Scholar]
  9. Culver J. N., Dawson W. O. 1989; Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Molecular Plant-Microbe-Interactions 2:209–213
    [Google Scholar]
  10. Deom C. M., Oliver M. J., Beachy R. N. 1987; The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394
    [Google Scholar]
  11. Fraile A., García-Arenal F. 1990; A classification of the tobamoviruses based on comparisons among their 126K proteins. Journal of General Virology 71:2223–2228
    [Google Scholar]
  12. García-Luque I., Serra M. T., Alonso E., Wicke B., Ferrero M. L., Díaz-Ruíz J. R. 1990; Characterization of a Spanish strain of pepper mild mottle virus (PMMV-S) and its relationship to other tobamoviruses. Journal of Phytopathology 129:1–8
    [Google Scholar]
  13. Gibbs A. 1986; Tobamovirus classification. In The Plant Viruses vol 2 pp 168–178 Edited by Van Regenmortel M. H. V., Fraenkel-Conrat H. New York: Plenum Press;
    [Google Scholar]
  14. Goelet P., Lomonossoff G. P., Butler P. J. G., Akam M. E., Gait M. J., Karn J. 1982; Nucleotide sequence of tobacco mosaic virus RNA. Proceedings of the National Academy of Sciences, U. S. A. 79:5818–5822
    [Google Scholar]
  15. Goldbach R., Wellink J. 1988; Evolution of plus-strand RNA viruses. Intervirology 29:260–267
    [Google Scholar]
  16. Gorbalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research 17:7735–7762
    [Google Scholar]
  17. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  18. Habili N., Symons R. H. 1989; Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Research 17:9543–9555
    [Google Scholar]
  19. Haseloff J., Goelet P., Zimmern D., Ahlquist P., Dasgupta R., Kaesberg P. 1984; Striking similarities in amino acid sequence among non-structural proteins encoded by RNA viruses that have dissimilar genomic organization. Proceedings of the National Academy of Sciences, U. S. A. 81:4358–4362
    [Google Scholar]
  20. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature, London 333:22–23
    [Google Scholar]
  21. Hull R. 1989; The movement of viruses in plants. Annual Review of Phytopathology 27:213–240
    [Google Scholar]
  22. Ishikawa M., Meshi T., Motoyoshi F., Takamatsu N., Okada Y. 1986; In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Research 14:8291–8305
    [Google Scholar]
  23. Ishikawa M., Meshi T., Watanabe Y., Okada Y. 1988; Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3′ non-coding regions. Virology 164:290–293
    [Google Scholar]
  24. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  25. Knorr D. A., Dawson W. O. 1988; A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proceedings of the National Academy of Sciences, U.S.A. 85:170–174
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  28. Meshi T., Ohno T., Iba H., Okada Y. 1981; Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3′ non-coding region. Molecular and General Genetics 184:20–25
    [Google Scholar]
  29. Meshi T., Ohno T., Okada Y. 1982; Nucleotide sequence of the 30K protein cistron of cowpea strain of tobacco mosaic virus. Nucleic Acids Research 10:6111–6117
    [Google Scholar]
  30. Meshi T., Kiyama R., Ohno T., Okada Y. 1983; Nucleotide sequence of the coat protein cistron and the 3′ non-coding region of cucumber green mottle mosaic virus (watermelon strain) RNA. Virology 127:54–64
    [Google Scholar]
  31. Meshi T., Watanabe Y., Saito T., Sugimoto A., Maeda T., Okada Y. 1987; Function of the 30-kD protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO Journal 6:2557–2567
    [Google Scholar]
  32. Meshi T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Okada Y. 1988; Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO Journal 7:1575–1581
    [Google Scholar]
  33. Meshi T., Motoyoshi F., Maeda T., Yoshiwoka S., Watanabe H., Okada Y. 1989; Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1:515–522
    [Google Scholar]
  34. Mi S., Durbin R., Huang H. V., Rice C. M., Stollar V. 1989; Association of the Sindbis virus RNA methyltransferase activity with the non-structural protein nsPl. Virology 170:385–391
    [Google Scholar]
  35. Nejidat A., Cellier F., Holt C. A., Gafny R., Eggenberger A. L., Beachy R. N. 1991; Transfer of the movement protein gene between two tobamoviruses: influence on local lesion development. Virology 180:318–326
    [Google Scholar]
  36. Nishiguchi M., Kikuchi S., Kiho Y., Ohno T., Meshi T., Okada Y. 1985; Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Research 13:5585–5590
    [Google Scholar]
  37. Ohno T., Takamatsu N., Meshi T., Okada Y., Nishiguchi M., Kiho Y. 1983; Single amino acid substitution in 30K protein of TMV defective in virus transport function. Virology 131:255–258
    [Google Scholar]
  38. Ohno T., Aoyagi M., Yamanashi Y., Saito H., Ikawa S., Meshi T., Okada Y. 1984; Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. Journal of Biochemistry 96:1915–1923
    [Google Scholar]
  39. Palukaitis P., Zaitlin M. 1986; Tobacco mosaic virus: infectivity and replication. In The Plant Viruses vol 2 pp 105–131 Edited by Van Regenmortel M. H. V., Fraenkel-Conrat H. New York: Plenum Press;
    [Google Scholar]
  40. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  41. Quadt R., Jaspars E. M. J. 1989; RNA polymerases of plus-strand RNA viruses of plants. Molecular Plant-Microbe Interactions 2:219–223
    [Google Scholar]
  42. Richards K. E., Guilley H., Jonard G., Keith G. 1977; Leader sequence of 71 nucleotides devoid of G in tobacco mosaic virus RNA. Nature, London 267:548–550
    [Google Scholar]
  43. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1990; N-terminal domains of large putative NTPases of ‘Sindbis-like’ plant viruses share amino acid motifs and may be RNA methyltransferases. Abstracts, VIIIth International Congress of Virology (Berlin) p 377
    [Google Scholar]
  44. Saito T., Imai Y., Meshi T., Okada Y. 1988; Interviral homologies of the 30K proteins of tobamoviruses. Virology 167:653–656
    [Google Scholar]
  45. Saito T., Yamanaka K., Watanabe Y., Takamatsu N., Meshi T., Okada Y. 1989; Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N′ gene. Virology 173:11–20
    [Google Scholar]
  46. Solís I., García-Arenal F. 1990; The complete nucleotide sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic virus. Virology 177:553–558
    [Google Scholar]
  47. Strauss J. H., Strauss E. G. 1988; Evolution of RNA viruses. Annual Review of Microbiology 42:657–683
    [Google Scholar]
  48. Strauss E. G., Levinson R., Rice C. M., Dalrymple J., Strauss J. H. 1988; Non-structural proteins nsP3 and nsP4 of Ross River and O’Nyong-nyong viruses: sequence and comparison with those of other alphaviruses. Virology 164:265–274
    [Google Scholar]
  49. Wetter C. 1986; Tobacco mild green mottle mosaic virus. In The Plant Viruses vol 2 pp 205–219 Edited by Van Regenmortel M. H. V., Fraenkel-Conrat H. New York: Plenum Press;
    [Google Scholar]
  50. Wetter C., Conti M. 1988; Pepper mild mottle virus. CMI/AAB Descriptions of Plant Viruses no. 330
    [Google Scholar]
  51. Wetter C., Conti M., Altschuh D., Tabillion R., Van Regenmortel M. H. V. 1984; Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily. Phytopathology 74:405–410
    [Google Scholar]
  52. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. 1989; Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379
    [Google Scholar]
  53. Young N., Forney J., Zaitlin M. 1987; Tobacco mosaic virus replicase and replicative structures. Journal of Cell Science Supplement 7:277–285
    [Google Scholar]
  54. Zimmern D. 1977; The nucleotide sequence at the origin for assembly on tobacco mosaíc virus RNA. Cell 11:463–482
    [Google Scholar]
  55. Zimmern D., Hunter T. 1983; Point mutation of the 30K open reading frame of TMV implicated in temperature sensitive assembly and local lesion spreading of mutant Ni2519. Embo Journal 3:1893–1900
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-12-2875
Loading
/content/journal/jgv/10.1099/0022-1317-72-12-2875
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error