1887

Abstract

induced a set of general stress proteins in response to a salt or heat stress. Cells subjected to a mild heat stress showed a protective response which enabled them to survive otherwise lethal temperatures (e.g. 52 °C). In a similar way bacteria were enabled to survive toxic concentrations of NaCl by pretreatment with lower salt concentrations. A mild heat shock induced a cross-protection against lethal salt stress. The pretreatment of cells with low salt, however, was less effective in the induction of thermotolerance than a preceding mild heat stress. Three stress proteins were identified on the basis of their N-terminal amino acid sequences as homologues of GroEL, DnaK and ClpP of . The role of general and specific stress proteins in the induction of thermotolerance/salt tolerance and cross-protection is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-10-2125
1992-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/10/mic-138-10-2125.html?itemId=/content/journal/micro/10.1099/00221287-138-10-2125&mimeType=html&fmt=ahah

References

  1. Ang D., & Georgopoulos C. 1989; The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds. Journal of Bacteriology 171:2748–2755
    [Google Scholar]
  2. Bardwell J.C.A., & Craig E. J. 1984; Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proceedings of the National Academy of Sciences of the United States of America 81848–852
    [Google Scholar]
  3. Belitsky B. R., & Shakulov R. S. 1980; Amount of guanosine polyphosphate and the level of stable RNA synthesis in Bacillus subtilis upon inhibition of protein synthesis. Molekularnaja Biologia 14:1343–1353
    [Google Scholar]
  4. Bukau B., , Donelly C. E., & Walker G. C. 1989; DnaKandGroE proteins play roles in E. coli metabolism at low and intermediate temperatures as well as at high temperatures. In Stress-induced Proteins, pp. 27–36 New York: Alan R. Liss;
    [Google Scholar]
  5. Clark D., & Parker J. 1984; Proteins induced by high osmotic pressure in Escherichia coli . FEMS Microbiology Letters 25:81–83
    [Google Scholar]
  6. Dowds B. C. A., , Murphy P., , Mcconnell D. J., & Devine K. M. 1987; Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtiliis . Journal of Bacteriology 169:5771–5775
    [Google Scholar]
  7. Hearne C. M., & Ellar D. J. 1989; Nucleotide sequence of a Bacillus megaterium gene homologous to the dnaK gene of Escherichia coli . Nucleic Acids Research 17:8373
    [Google Scholar]
  8. Hecker M., & Babel W. (editors) 1988 Physiologie der Mikroorgan-ismen. Jena & Stuttgart: VEB Gustav Fischer Verlag;
    [Google Scholar]
  9. Hecker M., & Richter A. 1987; Physiologische Untersuchungen zur Bildung von Hitzeschockproteinen in Bacillus subtilis . Journal of Basic Microbiology 27:253–261
    [Google Scholar]
  10. Hecker M., & Volker U. 1990; General stress proteins in Bacillus subtilis . FEMS Microbiology Ecology 14:197–214
    [Google Scholar]
  11. Hecker M., , Richter A., , Schroeter A., , Wölfel L., & Mach F. 1987; Synthese von Hitzeschockproteinen nach einer Aminosaure-und Sauerstofflimitation in Bacillus subtilis relA+ und relA-StämMen. Zeitschrift fur Naturforschung 42c:941–947
    [Google Scholar]
  12. Hecker M., , Heim C., , Volker U., & Wolfel L. 1988; Induction of stress proteins by sodium chloride treatment in Bacillus subtilis . Archives of Microbiology 150:564–566
    [Google Scholar]
  13. Hemmningsen S. M., , Woolford C., , Van Der Vries S., , Tilly K., , Dennis D. T., , Georgopoulos C. P., , Hendrix R. W., & Ellis R. J. 1988; Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, London 333:330–334
    [Google Scholar]
  14. Imanaka T., & Takagaki K. 1988; Cloning in Bacillus subtilis of temperature-dependent promoter fragments from Bacillus stearother-mophilus and Bacillus subtilis . FEMS Microbiology Letters 52:103–108
    [Google Scholar]
  15. Jenkins D. E., , Schultz J.E., & Matin A. 1988; Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli . Journal of Bacteriology 170:3910–3914
    [Google Scholar]
  16. Jenkins D. E., , Chaisson S. A., & Matin A. 1990; Starvation-induced cross protection against osmotic challenge in Escherichia coli . Journal of Bacteriology 172:2779–2781
    [Google Scholar]
  17. Jenkins D. E., , Auger E. A., & Matin A. 1991; Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation and survival. Journal of Bacteriology 173:1992–1996
    [Google Scholar]
  18. Kusukawa N., & Yura T. 1988; Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes & Development 2:874–882
    [Google Scholar]
  19. Kusukawa N., , Mori H., , Kondo A., & Hiraga S. 1987; Partitioning of the F plasmid: overproduction of an essential protein for partition inhibits plasmid maintenance. Molecular and General Genetics 208:365–372
    [Google Scholar]
  20. Lange R., & Hengge-Aronis R. 1991a; Growth-phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factors as σs. Journal of Bacteriology 173:4474–4481
    [Google Scholar]
  21. Lange R., & Hengge-Aronis R. 1991b; Identification of a central regulator of stationary-phase gene expression in Escherichia coli . Molecular Microbiology 5:49–59
    [Google Scholar]
  22. Matin A. 1991; The molecular basis of carbon-starvation-induced general resistance in Escherichia coli . Molecular Microbiology 5:3–10
    [Google Scholar]
  23. Maurizi M. R., , Clark W. P., , Katayama Y., , Rudikoff S., , Pumphrey J., , Bowers B., & Gottesman S. 1990; Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli . Journal of Biological Chemistry 265:12536–12545
    [Google Scholar]
  24. Mccann M. P., , Kidwell J. P., & Matin A. 1991; The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli . Journal of Bacteriology 173:4188–4194
    [Google Scholar]
  25. Meury J., & Kohiyama M. 1991; Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli . Journal of Bacteriology 173:4404–4410
    [Google Scholar]
  26. Miller B. S., , Kennedy T. E., & Streips U. N. 1991; Molecular characterization of specific heat shock proteins in Bacillus subtilis . Current Microbiology 22:231–236
    [Google Scholar]
  27. Neidhardt F. C., & Vanbogelen R. A. 1987 Heat shock response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1334–1345 Edited by Neidhardt F. C., , Ingraham J. L., , Low K. B., , Magasanik B., , Schaechter M., & person-group-type="editor"> Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. O'Farrell P. H. 1975; High resolution two-dimensional electro-phoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  29. Richter A., & Hecker M. 1986; Heat-shock proteins in Bacillus subtilis: a two-dimensional electrophoresis study. FEMS Microbiology Letters 36:69–71
    [Google Scholar]
  30. Schmidt A., , Schiesswohl M., , Volker U., , Hecker M., & Schumann W. 1992; Cloning, sequencing, mapping and transcriptional analysis of the groESL operon from Bacillus subtilis . Journal of Bacteriology 174:3993–3999
    [Google Scholar]
  31. Smith I., , Paress P., , Cabane K., & Dubnau E. 1980; Genetics and physiology of the rel system of Bacillus subtilis . Molecular and General Genetics 178:271–279
    [Google Scholar]
  32. Vanbogelen R., , Acton M. A., & Neidhardt F. C. 1987; Induction of the heat shock regulon does not produce thermotoler-ance in Escherichia coli . Genes and Development 1:525–531
    [Google Scholar]
  33. Wetzstein M., & Schumann W. 1990; Nucleotide sequence of a Bacillus subtilis gene homologous to the grpE gene of E. coli located immediately upstream of the dnaK gene. Nucleic Acids Research 18:1289
    [Google Scholar]
  34. Wetzstein M., , Dedio J., & Schumann W. 1990; Complete nucleotide sequence of the Bacillus subtilis dnaK gene. Nucleic Acids Research 18:2172
    [Google Scholar]
  35. Wetzstein M., , Völker U., , Dedio J., , Löbau S., , Zuber U., , Schiesswohl M., , Herget C., , Hecker M., & Schumann W. 1992; Cloning, sequencing and molecular analysis of the dnaKlocus from Bacillus subtilis . Journal of Bacteriology 174:3300–3310
    [Google Scholar]
  36. Yamamori T., & Yura T. 1982; Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America 19, 790–794
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-10-2125
Loading
/content/journal/micro/10.1099/00221287-138-10-2125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error