1887

Abstract

X-ray absorption near edge structure (XANES) spectroscopy at the sulfur K-edge was applied to probe the speciation of sulfur of metabolically different sulfur-accumulating bacteria . Fitting the spectra using a least-square fitting routine XANES reveals at least three different forms of sulfur in bacterial sulfur globules. Cyclooctasulfur dominates in the sulfur globules of and the very recently described giant bacterium . A second type of sulfur globules is present in : here the sulfur occurs as polythionates. In contrast, in purple and green sulfur bacteria the sulfur mainly consists of sulfur chains, irrespective of whether it is accumulated in globules inside or outside the cells. These results indicate that the speciation of sulfur in the sulfur globules reflects the different ecological and physiological properties of different metabolic groups of bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-267
2002-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480267a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-267&mimeType=html&fmt=ahah

References

  1. Althoff K. H., Dreist A. 7 other authors von Drachenfels W. 1990; ELSA – one year experience with the Bonn electron accelerator. Particle Accelerators 27:347–352
    [Google Scholar]
  2. Bartsch R. G., Newton G. L., Sherill C., Fahey R. C. 1996; Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178:4742–4746
    [Google Scholar]
  3. Bianconi A. 1988; XANES-spectroscopy. In X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES pp 573–662 Edited by Koningsberger D. C. Prins R. C. New York: Wiley;
    [Google Scholar]
  4. Brune D. C. 1995; Isolation and characterization of sulfur globules proteins from Chromatium vinosum and Thiocapsa roseopersicina . Arch Microbiol 163:391–399 [CrossRef]
    [Google Scholar]
  5. Chauvistré R., Hormes J., Hartmann E., Etzenbach N., Hosch R., Hahn J. 1997; Sulfur K-shell photoabsorption spectroscopy of the sulfanes R-S n -R, n =2–4. Chem Phys 223:293–302 [CrossRef]
    [Google Scholar]
  6. Cohn F. 1875; Untersuchungen über Bakterien. Beitr Biol Pflanz 1:141–207
    [Google Scholar]
  7. Cramer C. 1870 In Chemisch-Physikalische Beschreibung der Thermen von Baden in der Schweiz Edited by Müller C. Baden: C. Müller;
    [Google Scholar]
  8. Donohue J. 1974 The Structures of the Elements New York: Wiley;
    [Google Scholar]
  9. Guerrero R., Mas J., Pedrós-Alió C. 1984; Buoyant density changes due to intracellular content of sulfur in Chromatium warmingii and Chromatium vinosum . Arch Microbiol 137:350–356 [CrossRef]
    [Google Scholar]
  10. Hageage G. J. Jr, Eanes E. D., Gherna R. L. 1970; X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol 101:464–469
    [Google Scholar]
  11. Imhoff J. F. 1992; The family Ectothiorhodospiraceae. In The Prokaryotes pp 3222–3229 Edited by Balows A. Trüper H. G. Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  12. Imhoff J. F., Petri R., Süling J. 1998; Phylogenetic and taxonomic reclassification of Chromatium species and related purple sulfur bacteria. Int J Syst Bacteriol 48:1129–1143 [CrossRef]
    [Google Scholar]
  13. Kelly D. P., Wood A. P. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen. nov. and Thermothiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516 [CrossRef]
    [Google Scholar]
  14. Larkin J. M., Strohl W. R. 1983; Beggiatoa , Thiothrix and Thioploca . Annu Rev Microbiol 37:341–367 [CrossRef]
    [Google Scholar]
  15. Lemonnier M., Collet O., Depautex C., Esteva J.-M., Raoux D. 1978; High vacuum two crystal soft X-ray monochromator. Nucl Instr Methods 152:109–111 [CrossRef]
    [Google Scholar]
  16. Mas J., van Gemerden H. 1987; Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum . Arch Microbiol 146:362–369 [CrossRef]
    [Google Scholar]
  17. Modrow H., Visel F., Zimmer R., Hormes J. 2001; Monitoring thermal oxidation of sulfur crosslinks in SBR-elastomers by quantitative analysis of sulfur K-edge XANES-spectra. Rubber Chem Technol 74:281–294 [CrossRef]
    [Google Scholar]
  18. Parrat L. G., Hempstead C. F., Jossem E. L. 1957; ‘Thickness effect’ in absorption spectra near absorption edges. Phys Rev 105:1228–1232 [CrossRef]
    [Google Scholar]
  19. Pasteris J. D., Freeman J. J., Goffredi S. K., Buck K. R. 2001; Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180:3–18 [CrossRef]
    [Google Scholar]
  20. Pattaragulwanit K., Brune D. C., Dahl C., Trüper H. G. 1998; Molecular genetic evidence for extracytoplasmatic localization of sulfur globules in Chromatium vinosum . Arch Microbiol 169:434–444 [CrossRef]
    [Google Scholar]
  21. Pfennig N., Trüper H. G. 1992; The family Chromatiaceae. In The Prokaryotes pp 3584–3592 Edited by Balows A. Trüper H. G. Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  22. Pickering I. J., Prince R. C., Divers T., George G. N. 1998; Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett 441:11–14 [CrossRef]
    [Google Scholar]
  23. Pickering I. J., George G. N., Yu E. Y., Brune D. C., Tuschak C., Overmann J., Beatty J. T., Prince R. C. 2001; Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry 40:8138–8145 [CrossRef]
    [Google Scholar]
  24. Prange A., Arzberger I., Engemann C., Modrow H., Schumann O., Steudel R., Dahl C., Hormes J., Trüper H. G. 1999; In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428446–454 [CrossRef]
    [Google Scholar]
  25. Prange A., Birzele B., Arzberger I., Hormes J., Antes S., Köhler P., Kühlsen N. 2001; Sulfur in wheat gluten: in situ analysis by X-ray absorption near edge structure (XANES) spectroscopy. Eur Food Res Technol 212:570–575 [CrossRef]
    [Google Scholar]
  26. Pott A. S., Dahl C. 1998; Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144:1881–1894 [CrossRef]
    [Google Scholar]
  27. Rompel A., Cinco R. M., Latimer M. J. 7 other authors 1998; Sulfur K-edge X-ray absorption spectroscopy: a spectroscopic tool to examine the redox state of S-containing metabolites in vivo . Proc Natl Acad Sci USA 95:6122–6127 [CrossRef]
    [Google Scholar]
  28. Schmidt G. L., Nicolson G. L., Kamen M. D. 1971; Composition of the sulfur particle of Chromatium strain D. J Bacteriol 105:1137–1141
    [Google Scholar]
  29. Schulz H., Brinkhoff T., Ferdelman T. G., Marine M. H., Teske A., Jørgensen B. B. 1999; Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495 [CrossRef]
    [Google Scholar]
  30. Siefert E., Pfennig N. 1987; Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101
    [Google Scholar]
  31. Stern E. A., Kim K. 1981; Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Phys Rev B 23:3781–3787 [CrossRef]
    [Google Scholar]
  32. Steudel R. 1989; On the nature of the ‘elemental sulfur’ (S0) reduced by sulfur-oxidizing bacteria – a model for S0 globules. In Autotrophic Bacteria pp 289–303 Edited by Schlegel H. G. Bowien B. Madison, WI: Science Technology Publishers;
    [Google Scholar]
  33. Steudel R. 1996; Das gelbe Element und seine erstaunliche Vielseitigkeit. Chemie in unserer Zeit 30:226–234 [CrossRef]
    [Google Scholar]
  34. Steudel R., Albertsen A. 1999; The chemistry of aqueous sulfur sols – models for bacterial sulfur globules?. In Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers pp 17–26 Edited by Steinbüchel A. Weinheim: Wiley-VCH;
    [Google Scholar]
  35. Steudel R., Holdt G., Hazeu W., Göbel T. 1987; Chromatographic separation of higher polythionates S n \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(O_{6}^{2{-}}\) \end{document} ( n =3…22) and their detection in cultures of Thiobacillus ferrooxidans : molecular composition of bacterial sulfur secretions. Angew Chem Int Ed Engl 26:151–153 [CrossRef]
    [Google Scholar]
  36. Steudel R., Holdt G., Visscher P. T., van Gemerden H. 1990; Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437 [CrossRef]
    [Google Scholar]
  37. Strohl W. R., Geffers I., Larkin J. M. 1981; Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr Microbiol 6:75–79 [CrossRef]
    [Google Scholar]
  38. Strohl W. R., Howard K. S., Larkin J. M. 1982; Ultrastructure of Beggiatoa alba strain B15LD. J Gen Microbiol 128:73–84
    [Google Scholar]
  39. Sze K. H., Brion C. E., Tronc M., Bodeur S., Hitchcock A. P. 1988; Inner and valence shell electronic excitation of dimethyl sulfoxide by electron energy loss and photoabsorption spectroscopies. Chem Phys 121:279–297 [CrossRef]
    [Google Scholar]
  40. Then J., Trüper H. G. 1983; Sulfide oxidation in Ectothiorhodospira abdelmalekii . Evidence for the catalytic role of cytochrome c -551. Arch Microbiol 135:254–258 [CrossRef]
    [Google Scholar]
  41. Then J., Trüper H. G. 1984; Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochloris . Arch Microbiol 139:295–298 [CrossRef]
    [Google Scholar]
  42. Trüper H. G., Hathaway J. C. 1967; Orthorhombic sulfur formed by photosynthetic sulphur bacteria. Nature 215:435–436 [CrossRef]
    [Google Scholar]
  43. Winogradsky S. N. 1887; Über Schwefelbakterien. Bot Ztg 45:489–508
    [Google Scholar]
  44. Winter I., Hormes J., Hiller M. 1995; Thermal ageing of electrically conducting polymers: XANES measurements of polythiophenes. Nucl Instr Methods B97:287–291
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-267
Loading
/content/journal/micro/10.1099/00221287-148-1-267
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error