1887

Abstract

Two strains, CN44 and CN47, isolated from marine sediment of the East China Sea, were characterized by using a polyphasic approach. The isolates were Gram-negative, strictly aerobic, non-spore-forming rods. The chemotaxonomic characteristics of these isolates included the presence of C 7, C, iso-C 2-OH and/or C 7 and C 3-OH as the major cellular fatty acids and Q-8 as the predominant ubiquinone. The DNA G+C contents of strains CN44 and CN47 were 62.5 and 56.3 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain CN44 was related to members of the genus . The most closely related described organism was the type strain of (95.3 % sequence similarity). Strain CN47 showed the highest sequence similarity to the type strain of (97.8 %) and <97 % similarity to other type strains of described species. The level of DNA–DNA relatedness between strain CN47 and DSM 7027 was 46 %. On the basis of phenotypic and genotypic properties, strains CN44 and CN47 represent two novel species within the genus , for which the names sp. nov. (type strain, CN44 =CGMCC 1.7286 =JCM 15523) and sp. nov. (type strain, CN47 =CGMCC 1.7287 =JCM 15524) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005751-0
2009-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1173.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005751-0&mimeType=html&fmt=ahah

References

  1. Baumann, P., Bowditch, R. D., Baumann, L. & Beaman, B.(1983). Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33, 857–865.[CrossRef] [Google Scholar]
  2. Bowditch, R. D., Baumann, L. & Baumann, P.(1984). Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10, 221–230.[CrossRef] [Google Scholar]
  3. Chang, H.-W., Nam, Y.-D., Kwon, H.-Y., Park, J. R., Lee, J.-S., Yoon, J.-H., An, K.-G. & Bae, J.-W.(2007).Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 57, 77–80.[CrossRef] [Google Scholar]
  4. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  6. Euzéby, J. P. & Tindall, B. J.(2004). Status of strains that contravene Rules 27(3) and 30 of the Bacteriological Code. Request for an opinion. Int J Syst Evol Microbiol 54, 293–301.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  8. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  9. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B.(1997).Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47, 369–376.[CrossRef] [Google Scholar]
  10. Huo, Y.-Y., Wang, C.-S., Yang, J.-Y., Wu, M. & Xu, X.-W.(2008).Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 58, 2885–2889.[CrossRef] [Google Scholar]
  11. Huβ, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  12. Kim, H., Choo, Y.-J., Song, J., Lee, J.-S., Lee, K. C. & Cho, J.-C.(2007).Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 57, 1659–1662.[CrossRef] [Google Scholar]
  13. Kim, Y.-G., Jin, Y.-A., Hwang, C. Y. & Cho, B. C.(2008).Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int J Syst Evol Microbiol 58, 164–167.[CrossRef] [Google Scholar]
  14. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  16. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  17. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  18. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  19. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  20. Mikhailov, V. V., Romanenko, L. A. & Ivanova, E. P.(2006). The genus Alteromonas and related proteobacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 6, pp. 597–645. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  21. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  22. Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T.(2002). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52, 739–747.[CrossRef] [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  24. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M.(2007).Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef] [Google Scholar]
  25. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M.(2008).Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef] [Google Scholar]
  26. ZoBell, C. E.(1941). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005751-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005751-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1173 – 1178

Fatty acid composition of strains CN44 and CN47 [ PDF] (95 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error