1887

Abstract

A large group of 38 strains of saprophytic bacteria was isolated from soil and the rhizosphere of agricultural plants. The novel organisms were Gram-negative, aerobic, rod-shaped bacteria that produced a green fluorescent pigment, a red–orange diffusible pigment and a complex mixture of phloroglucinol derivates with antimicrobial activity. The latter have not been found in other bacteria, but are peculiar to ferns. The bacteria were vigorous denitrifiers that synthesized levan from sucrose and liquefied gelatin, but were found not to degrade aesculin, starch, agar, Tween 80 or DNA. Bacterial growth was found to occur at 4 °C but not at 40 °C. The predominant cellular fatty acids were 16 : 0, 16 : 1(n-7), 18 : 1(n-7) and 17 : 0 cyclo. The G+C content of the novel bacteria was 61.0–62.9 mol%. 16S rRNA gene sequence analysis indicated that the representative strain CIP 109457 had a clear affiliation with groups, with the nearest relatives being , , , and . DNA–DNA hybridization experiments showed that the group of isolated strains exhibited high levels of genetic relatedness (81–100 %), confirming that they are representatives of the same species. At the same time, they bound at low levels (4−46 %) with DNA of the type strains of their nearest relatives with the exception of ; DNA binding of 90 % with the DNA of CIP 107059 suggested that the bacteria studied belong to this species. Analysis of taxonomic data indicated that the group of novel bacteria maintain a distinct phenotypic profile, allowing the description of novel subspecies within , for which the following names are proposed: subsp. subsp. nov. (type strain DBK11 =CFBP 11706 =CIP 107059 =DSM 13227 =JCM 11938) and subsp. subsp. nov., with the type strain CIP 109457 (=ATCC 49054 =IMV 387 =VKM B-1524).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009654-0
2009-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/10/2476.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009654-0&mimeType=html&fmt=ahah

References

  1. Achouak, W., Sutra, L., Heulin, T., Meyer, J. M., Fromin, N., Degraeve, S., Christen, R. & Gardan, L.(2000).Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 50, 9–18.[CrossRef] [Google Scholar]
  2. Ait Tayeb, L., Ageron, E., Grimont, F. & Grimont, P. A.(2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156, 763–773.[CrossRef] [Google Scholar]
  3. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H.(2000). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef] [Google Scholar]
  4. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F.(1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef] [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  6. Catara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R. & Gardan, L.(2002). Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol 52, 1749–1758.[CrossRef] [Google Scholar]
  7. Chevenet, F., Brun, C., Bañuls, A. L., Jacq, B. & Christen, R.(2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439[CrossRef] [Google Scholar]
  8. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  9. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  10. Galtier, N., Gouy, M. & Gautier, C.(1996). SeaView and phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548. [Google Scholar]
  11. Gascuel, O.(1997).bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14, 685–695.[CrossRef] [Google Scholar]
  12. Guindon, S. & Gascuel, O.(2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  13. Hugh, R. & Leifson, E.(1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66, 24–26. [Google Scholar]
  14. King, E. O., Ward, M. K. & Raney, D. E.(1954). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307. [Google Scholar]
  15. Kiprianova, E. A., Levanova, G. F., Novova, E. V., Smirnov, V. V. & Garagulia, A. D.(1985). Taxonomic study of Pseudomonas aurantiaca Nakhimovskaya, 1948 and the proposal of a neotype strain of this species. Mikrobiologiia 54, 434–440 (in Russian). [Google Scholar]
  16. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors(2007).clustalw and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef] [Google Scholar]
  17. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  18. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  19. Moore, E. R. B., Mau, M., Arnscherdt, A., Bottger, E. C., Hutson, R. A., Collins, M. D., Van De Peer, Y., De Wachter, R. & Timmis, K. N.(1996). The determination and comparison of the 16S rRNA gene sequence of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19, 478–492.[CrossRef] [Google Scholar]
  20. Palleroni, N. J.(1984). Genus I. Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  21. Palleroni, N. J.(2005). Genus I. Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, pp. 323–379. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  22. Peix, A., Valverde, A., Rivas, R., Igual, J. M., Ramírez-Bahena, M.-H., Mateos, P. F., Santa-Regina, I., Rodríguez-Barrueco, C., Martínez-Molina, E. & Velázquez, E.(2007). Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57, 1286–1290.[CrossRef] [Google Scholar]
  23. Sikorski, J., Stackebrandt, E. & Wackernagel, W.(2001).Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 51, 1549–1555. [Google Scholar]
  24. Smirnov, V. V. & Kiprianova, E. A.(1990).Bacteria of the Genus Pseudomonas. Kiev: Naukova Dumka (in Russian).
  25. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M.(1966). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef] [Google Scholar]
  26. Svetashev, V. I., Vysotskii, M. V., Ivanova, E. P. & Mikhailov, V. V.(1995). Cellular fatty acid of Alteromonas species. Syst Appl Microbiol 18, 37–43.[CrossRef] [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  28. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S.(2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009654-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009654-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2476 - 2481

Source of isolation of strains of subsp. subsp. nov.

DNA relatedness among tested strains.

[PDF file of Supplementary Tables](71 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error