1887

Abstract

A novel, strictly anaerobic, non-motile, non-spore-forming, Gram-negative, short, straight rod with tapered ends, designated YIT 12065, was isolated from human faeces. Strain YIT 12065 was saccharolytic and negative for catalase, oxidase and urease, hydrolysis of aesculin and gelatin, nitrate reduction and indole production. The end products of glucose fermentation were acetic acid and a small amount of butyric acid. The DNA G+C content was 51.3 mol%. The predominant fatty acids were iso-C, C and C. Respiratory quinones were not detected. The cell wall contained glutamic acid, serine, alanine and -diaminopimelic acid. The whole-cell sugars were ribose, rhamnose, galactose and glucose. Phylogenetic analyses based on 16S rRNA gene sequences using three treeing algorithms revealed that the strain formed a novel family-level lineage within the phylum , class , order . JW/HY-331 was shown to be the closest named relative on the basis of 16S rRNA gene sequence similarity (86.9 %), followed by DSM 14871 (86.3 %) and JCM 13193 (86.1 %). Similar 16S rRNA gene sequences (98.6–96.7 %) were found amongst faecal uncultured clones of human and dugong (). They clustered with strain YIT 12065 in a distinct and deep evolutionary lineage of descent in the order . The distinct phylogenetic position supports the proposal of gen. nov., with the type species sp. nov. (type strain YIT 12065  = DSM 22607  = JCM 16072). A new family fam. nov. is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026989-0
2012-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/144.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026989-0&mimeType=html&fmt=ahah

References

  1. Chonan O., Matsumoto K., Watanuki M. 1995; Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59:236–239 [View Article][PubMed]
    [Google Scholar]
  2. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [View Article][PubMed]
    [Google Scholar]
  3. Ezaki T., Saidi S. M., Liu S. L., Hashimoto Y., Yamamoto H., Yabuuchi E. 1990; Rapid procedure to determine the DNA base composition from small amounts of gram-positive bacteria. FEMS Microbiol Lett 67:127–130 [View Article][PubMed]
    [Google Scholar]
  4. Felsenstein J. 2004; phylip (phylogeny inference package) version 3.6. Distributed by the author.. Department of Genome Sciences, University of Washington, Seattle, USA
  5. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  6. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  7. Honda S., Akao E., Suzuki S., Okuda M., Kakehi K., Nakamura J. 1989; High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 180:351–357 [View Article][PubMed]
    [Google Scholar]
  8. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai H. 2005; Ferrimonas marina sp. nov.. Int J Syst Evol Microbiol 55:1851–1855 [View Article][PubMed]
    [Google Scholar]
  9. Kim S., Jeong H., Kim S., Chun J. 2006; Clostridium ganghwense sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56:691–693 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  13. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. 2006; Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023 [View Article][PubMed]
    [Google Scholar]
  14. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D. other authors 2008; Evolution of mammals and their gut microbes. Science 320:1647–1651 [View Article][PubMed]
    [Google Scholar]
  15. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [View Article][PubMed]
    [Google Scholar]
  16. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  17. Morotomi M., Nagai F., Sakon H., Tanaka R. 2008; Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:2716–2720 [View Article][PubMed]
    [Google Scholar]
  18. Morotomi M., Nagai F., Sakon H., Tanaka R. 2009; Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol 59:1895–1900 [View Article][PubMed]
    [Google Scholar]
  19. Morotomi M., Nagai F., Watanabe Y., Tanaka R. 2010; Succinatimonas hippei gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 60:1788–1793 [View Article][PubMed]
    [Google Scholar]
  20. Morotomi M., Nagai F., Watanabe Y. 2011; Parasutterella secunda sp. nov., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales . Int J Syst Evol Microbiol 61:637–643 [View Article][PubMed]
    [Google Scholar]
  21. Nagai F., Morotomi M., Sakon H., Tanaka R. 2009; Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int J Syst Evol Microbiol 59:1793–1797 [View Article][PubMed]
    [Google Scholar]
  22. Nagai F., Morotomi M., Watanabe Y., Sakon H., Tanaka R. 2010a; Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol 60:1296–1302 [View Article][PubMed]
    [Google Scholar]
  23. Nagai F., Watanabe Y., Morotomi M. 2010b; Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. Int J Syst Evol Microbiol 60:2639–2646 [View Article][PubMed]
    [Google Scholar]
  24. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358[PubMed]
    [Google Scholar]
  25. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Detkova E. N., Whitman W. B., Krader P. 2003; Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles 7:327–334 [View Article][PubMed]
    [Google Scholar]
  26. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. other authors 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [View Article][PubMed]
    [Google Scholar]
  27. Ramamoorthy S., Sass H., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F. 2006; Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Sakon H., Nagai F., Morotomi M., Tanaka R. 2008; Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:970–975 [View Article][PubMed]
    [Google Scholar]
  30. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [View Article]
    [Google Scholar]
  31. Stackebrandt E., Schumann P., Schüler E., Hippe H. 2003; Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov.. Int J Syst Evol Microbiol 53:1439–1443 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  33. Tap J., Mondot S., Levenez F., Pelletier E., Caron C., Furet J. P., Ugarte E., Muñoz-Tamayo R., Paslier D. L. other authors 2009; Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Tsukinowa E., Karita S., Asano S., Wakai Y., Oka Y., Furuta M., Goto M. 2008; Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium. J Gen Appl Microbiol 54:25–38 [View Article][PubMed]
    [Google Scholar]
  36. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A. other authors 2009; A core gut microbiome in obese and lean twins. Nature 457:480–484 [View Article][PubMed]
    [Google Scholar]
  37. Vatsurina A., Badrutdinova D., Schumann P., Spring S., Vainshtein M. 2008; Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int J Syst Evol Microbiol 58:1228–1232 [View Article][PubMed]
    [Google Scholar]
  38. Watanabe Y., Nagai F., Morotomi M., Sakon H., Tanaka R. 2010; Bacteroides clarus sp. nov., Bacteroides fluxus sp. nov. and Bacteroides oleiciplenus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 60:1864–1869 [View Article][PubMed]
    [Google Scholar]
  39. Whitman W. B. 2006; Error in G+C calculations. Int J Syst Evol Microbiol 56:1177 [View Article]
    [Google Scholar]
  40. Yokoyama H., Wagner I. D., Wiegel J. 2010; Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov.. Int J Syst Evol Microbiol 60:67–71 [View Article][PubMed]
    [Google Scholar]
  41. Zhang C., Liu X., Dong X. 2004; Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973 [View Article][PubMed]
    [Google Scholar]
  42. Zhang C., Liu X., Dong X. 2005; Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803 [View Article][PubMed]
    [Google Scholar]
  43. Zoetendal E. G., Rajilic-Stojanovic M., de Vos W. M. 2008; High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026989-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026989-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error