1887

Abstract

This study investigated endophytic nitrogen-fixing bacteria isolated from two species of yam (water yam, L.; lesser yam, L.) grown in nutrient-poor alkaline soil conditions on Miyako Island, Okinawa, Japan. Two bacterial strains of the genus , S-93 and S-62, were isolated. The phylogenetic tree, based on the almost-complete 16S rRNA gene sequences (1476 bp for each strain), placed them in a distinct clade, with CCBAU 41251, I66, HAMBI 2975, PRF 81 and CIAT 899 being their closest species. Their bacterial fatty acid profile, with major components of C cyclo 8 and summed feature 8, as well as other phenotypic characteristics and DNA G+C content (59.65 mol%) indicated that the novel strains belong to the genus . Pairwise average nucleotide identity analyses separated the novel strains from their most closely related species with similarity values of 90.5, 88.9, 88.5, 84.5 and 84.4 % for HAMBI 2975, CIAT 899, CCBAU 57015, HAMBI 2971 and PRF 81, respectively; digital DNA–DNA hybridization values were in the range of 26–42 %. Considering the phenotypic characteristics as well as the genomic data, it is suggested that strains S-93 and S-62 represent a new species, for which the name is proposed. The type strain is S-93 (=NRIC 0988=NBRC 114257=DSM 110498).

Keyword(s): ANIb , D. alata , D. esculenta , pan-genome and yam
Funding
This study was supported by the:
  • Japan Society for the Promotion of Science, http://dx.doi.org/10.13039/501100001691 (Award 15K14680)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004381
2020-08-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5054.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004381&mimeType=html&fmt=ahah

References

  1. Sheu S-Y, Huang H-W, Young C-C, Chen W-M. Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2015; 65:472–478 [View Article][PubMed]
    [Google Scholar]
  2. Zhang S, Yang S, Chen W, Chen Y, Zhang M et al. Rhizobium arenae sp. nov., isolated from the sand of Desert Mu Us, China. Int J Syst Evol Microbiol 2017; 67:2098–2103 [View Article][PubMed]
    [Google Scholar]
  3. Zhang X-X, Tang X, Sheirdil RA, Sun L, Ma X-T. Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2014; 64:1373–1377 [View Article][PubMed]
    [Google Scholar]
  4. Zhang X-X, Gao J-S, Cao Y-H, Sheirdil RA, Wang X-C et al. Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 2015; 65:2931–2936 [View Article][PubMed]
    [Google Scholar]
  5. Zhao J-J, Zhang J, Sun L, Zhang R-J, Zhang C-W et al. Rhizobium oryziradicis sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2017; 67:963–968 [View Article][PubMed]
    [Google Scholar]
  6. Celador-Lera L, Menéndez E, Peix A, Igual JM, Velázquez E et al. Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots. Int J Syst Evol Microbiol 2017; 67:2306–2311 [View Article]
    [Google Scholar]
  7. Zhang L, Shi X, Si M, Li C, Zhu L et al. Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica . Antonie van Leeuwenhoek 2014; 106:715–723 [View Article][PubMed]
    [Google Scholar]
  8. Mano H, Morisaki H. Endophytic bacteria in the rice plant. Microbes Environ 2008; 23:109–117 [View Article][PubMed]
    [Google Scholar]
  9. Govaerts R, Wilkin P, Saunders RMK. World Checklist of Dioscoreales, Yams and Their Allies UK: Royal Botanic Gardens, Kew publishing; 2007
    [Google Scholar]
  10. Asiedu R, Sartie A. Crops that feed the World 1. Yams for income and food security. Food Secur 2010; 2:305–315
    [Google Scholar]
  11. Diby LN, Hgaza VK, Tie B, Assa A, Carsky R et al. Productivity of yams (Dioscorea spp.) as affected by soil fertility. J Anim Plant Sci 2009; 5:494–506
    [Google Scholar]
  12. Ettien DJB, Kouadio KH, N’goran KE, Yao-Kouamé A, Girardin O. Improving the performance of a traditional variety of yam produced under ferralsol poor in organic matter in the forest areas of Côte d’Ivoire. IJAAR 2014; 4:76–84
    [Google Scholar]
  13. Rezaei AQ, Kikuno H, Babil P, Tanaka N, Park B et al. Nitrogen-fixing bacteria is involved with the lesser yam (Dioscorea esculenta L.) growth under low fertile soil condition. Trop Agric Develop 2017; 61:40–47
    [Google Scholar]
  14. Takada K, Kikuno H, Babil P, Shiwachi H. Analysis of the source of nitrogen during water yam (Dioscorea alata L.) growth using δ15N observations. Trop Agric Develop 2018; 62:124–131
    [Google Scholar]
  15. Ouyabe M, Kikuno H, Tanaka N, Babil P, Shiwachi H. Nitrogen-fixing endophytic bacteria of water yam (Dioscorea alata L.) in relation with fertilization practices. Trop Agric Develop 2019a; 63:122–130
    [Google Scholar]
  16. Ouyabe M, Kikuno H, Tanaka N, Babil P, Shiwachi H. Contribution of biological nitrogen fixation in lesser yam (Dioscorea esculenta L.) associated with endophytic diazotrophic bacteria. Trop Agric Develop 2019; 63:131–139
    [Google Scholar]
  17. Ghiasian M, Sepahy AA, Amoozegar MA, Saadatmand S, Shavandi M. Bacterial diversity determination using culture-dependent and culture-independent methods. GJESM 2017; 3:153–164
    [Google Scholar]
  18. Shiwachi H, Kikuno H, Ohata J, Kikuchi Y, Irie K. Growth of water yam (Dioscorea alata L.) under alkaline soil conditions. Trop Agric Develop 2015; 59:76–82
    [Google Scholar]
  19. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 2001; 67:5285–5293 [View Article][PubMed]
    [Google Scholar]
  20. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO et al. Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 2010; 9:250–258 [View Article][PubMed]
    [Google Scholar]
  21. Paul D, Sinha SN. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 2017; 15:130–136 [View Article]
    [Google Scholar]
  22. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol 1951; 26:192–195 [View Article][PubMed]
    [Google Scholar]
  23. Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 2011; 12:51–53 [View Article][PubMed]
    [Google Scholar]
  24. Arief II JBSL, Astawan M, Fujiyama K, Witarto AB. Identification and probiotic characteristics of lactic acid bacteria isolated from Indonesian local beef. Asian J Anim Sci 2015; 9:25–36
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  30. Techo S, Shiwa Y, Tanaka N, Fujita N, Miyashita M et al. Enterococcus florum sp. nov., isolated from a cotton flower (Gossypium hirsutum L.). Int J Syst Evol Microbiol 2019; 69:2506–2513 [View Article][PubMed]
    [Google Scholar]
  31. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A et al. ed Bergey’s Manual of Systematics of Archaea and Bacteria Athens, USA: John Wiley & Sons; 2015 pp 1–36
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  34. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article][PubMed]
    [Google Scholar]
  35. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  37. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  40. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [View Article][PubMed]
    [Google Scholar]
  41. Caputo A, Fournier P-E, Raoult D. Genome and pan-genome analysis to classify emerging bacteria. Biol Direct 2019; 14:5 [View Article][PubMed]
    [Google Scholar]
  42. Deakin WJ, Broughton WJ. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 2009; 7:312–320 [View Article][PubMed]
    [Google Scholar]
  43. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2018; 20:1–15 [View Article][PubMed]
    [Google Scholar]
  44. Mueller HW, O'Flaherty JT, Wykle RL. Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids. Lipids 1982; 17:72–77 [View Article][PubMed]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  46. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system. Int J Syst Evol Microbiol 2000; 50 Pt 2:787–801 [View Article][PubMed]
    [Google Scholar]
  47. Dall'Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM et al. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 2013; 63:4167–4173 [View Article][PubMed]
    [Google Scholar]
  48. Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX et al. Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra . Int J Syst Evol Microbiol 2011; 61:512–517 [View Article][PubMed]
    [Google Scholar]
  49. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG et al. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 2008; 58:1693–1699 [View Article][PubMed]
    [Google Scholar]
  50. Gil-Serrano AM, González-Jiménez I, Tejero-Mateo P, Megías M, Romero-Vazquez MJ. Analysis of the lipid moiety of lipopolysaccharide from Rhizobium tropici CIAT899: identification of 29-hydroxytriacontanoic acid. J Bacteriol 1994; 176:2454–2457 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004381
Loading
/content/journal/ijsem/10.1099/ijsem.0.004381
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error