1887

Abstract

Bacterial strain A52C2 was isolated from the endophytic microbial community of a tree trunk and characterized. Strain A52C2 stained Gram-negative and formed rod-shaped cells that grew optimally at 30 °C and at pH 6.0–7.0. The G+C content of the DNA was 65.1 mol %. The respiratory quinone was ubiquinone 10, and the major fatty acids were cyclo-C 8 and C, representing 70.1 % of the total fatty acids. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain A52C2 in a distinct lineage within the order , family . The 16S rRNA gene sequence similarities of A52C2 to that of and were 93.15 and 93.2 %, respectively. The draft genome sequence of strain A52C2 comprises 4 196 045 bases with a 195-fold mapped coverage of the genome. The assembled genome consists of 43 contigs of more than 1 000 bp ( contig size was 209 720 bp). The genome encodes 4033 putative coding sequences. The phylogenetic, phenotypic and chemotaxonomic data showed that strain A52C2 (=UCCCB 130=CECT 8949=LMG 29042) represents the type of a novel species and genus, for which we propose the name gen. nov., sp. nov.

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award UID/EMS/00285/2020)
    • Principle Award Recipient: DiogoNeves Proença
  • Fundação para a Ciência e a Tecnologia (Award PTWPTDC/AAG-REC/3839/2014)
    • Principle Award Recipient: PaulaV. Morais
  • Horizon 2020 Framework Programme (Award 821096)
    • Principle Award Recipient: PaulaV. Morais
  • Office of Science (Award DE-AC02-05CH11231)
    • Principle Award Recipient: WilliamB. Whitman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005623
2022-12-19
2024-04-23
Loading full text...

Full text loading...

References

  1. Kim D, Kang K, Ahn T-Y. Chthonobacter albigriseus gen. nov., sp. nov., isolated from grass-field soil. Int J Syst Evol Microbiol 2017; 67:883–888 [View Article]
    [Google Scholar]
  2. Liu X-M, Zhou X-K, Li Y-D, Jiang J-X, Dong L-M et al. Chthonobacter rhizosphaerae sp. nov., a bacterium isolated from rhizosphere soil of Citrus sinenesis. Arch Microbiol 2021; 203:2343–2350 [View Article] [PubMed]
    [Google Scholar]
  3. Lv H, Masuda S, Fujitani Y, Sahin N, Tani A. Oharaeibacter diazotrophicus gen. nov., sp. nov., a diazotrophic and facultatively methylotrophic bacterium, isolated from rice rhizosphere. Int J Syst Evol Microbiol 2017; 67:576–582 [View Article]
    [Google Scholar]
  4. Suarez C, Ratering S, Geissler-Plaum R, Schnell S. Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant. Int J Syst Evol Microbiol 2014; 64:3160–3167 [View Article] [PubMed]
    [Google Scholar]
  5. Xi J, Wang Y, Yang X, Tao Y, Shao Y et al. Mongoliimonas terrestris gen. nov., sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:3010–3014 [View Article]
    [Google Scholar]
  6. Xie CH, Yokota A. Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 2005; 55:1233–1237 [View Article] [PubMed]
    [Google Scholar]
  7. Esquivel-Elizondo S, Maldonado J, Krajmalnik-Brown R. Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph. FEMS Microbiol Ecol 2018; 94:1–12 [View Article] [PubMed]
    [Google Scholar]
  8. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article] [PubMed]
    [Google Scholar]
  9. Im WT, Kim SH, Kim MK, Ten LN, Lee ST. Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int J Syst Evol Microbiol 2006; 56:1663–1666 [View Article] [PubMed]
    [Google Scholar]
  10. Poroshina MN, Trotsenko YA, Doronina NV. Methylobrevis pamukkalensis gen. nov., sp. nov., a halotolerant restricted facultative methylotroph isolated from saline water. Int J Syst Evol Microbiol 2015; 65:1321–1327 [View Article]
    [Google Scholar]
  11. Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L et al. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 2010; 5:e15191 [View Article]
    [Google Scholar]
  12. Proença DN, Francisco R, Kublik S, Schöler A, Vestergaard G et al. The microbiome of endophytic, wood colonizing bacteria from pine trees as affected by pine wilt disease. Sci Rep 2017; 7:4205 [View Article]
    [Google Scholar]
  13. Proença DN, Grass G, Morais PV. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 2017; 6: [View Article]
    [Google Scholar]
  14. Morais PV, Francisco R, Branco R, Chung AP, da Costa MS. Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 2004; 27:646–652 [View Article] [PubMed]
    [Google Scholar]
  15. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  18. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  23. Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG et al. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci 2015; 10:26 [View Article]
    [Google Scholar]
  24. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433–438 [View Article] [PubMed]
    [Google Scholar]
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  26. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  27. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:86 [View Article]
    [Google Scholar]
  28. Chen I-MA, Markowitz VM, Palaniappan K, Szeto E, Chu K et al. Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genomics 2016; 17:307 [View Article] [PubMed]
    [Google Scholar]
  29. Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article]
    [Google Scholar]
  30. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res 2021; 49:D751–D763 [View Article]
    [Google Scholar]
  31. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  33. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  34. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  35. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  36. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278 [View Article] [PubMed]
    [Google Scholar]
  37. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  38. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  39. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  40. Tindall JB, Sikorski J, Smibert AR, Krieg RN et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge JT, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  41. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42:872–874 [View Article] [PubMed]
    [Google Scholar]
  42. da Costa MS, Nobre MF, Wait R. Analysis of lipids from extremophilic bacteria. In Rainey FA, Oren A. eds Methods in Microbiology vol 35 Amsterdam: Elsevier; 2006 pp 127–159
    [Google Scholar]
  43. da Costa MS, Albuquerque L, Nobre MF, Wait R. The extraction and identification of respiratory lipoquinones of Prokaryotes and their use in taxonomy. In Rainey FA, Oren A. eds Methods in Microbiology (Taxonomy of Prokaryotes) vol 38 Elsevier Ltd; 2011 pp 197–206
    [Google Scholar]
  44. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of fatty acids in Bacteria. In Rainey FA, Oren A. eds Methods in Microbiology (Taxonomy of Prokaryotes) vol 38 Elsevier Ltd; 2011 pp 183–196
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005623
Loading
/content/journal/ijsem/10.1099/ijsem.0.005623
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error