1887

Abstract

infection is a threat to the health of free-ranging koalas () in Australia. Utilizing an extensive sample archive we determined the prevalence of in koalas within six regions of Victoria, Australia. The genotypes of the detected were characterized to better understand the epidemiology of this pathogen in Victorian koalas. Despite many studies in northern Australia (i.e. Queensland and New South Wales), prior studies in Victorian koalas are limited. We detected in 125/820 (15 %) urogenital swabs, but in only one ocular swab. Nucleotide sequencing of the molecular marker revealed that the majority (90/114) of samples typed were genotype B. This genotype has not been reported in northern koalas. In general, infection in Victorian koalas is associated with milder clinical signs compared with infection in koalas in northern populations. Although disease pathogenesis is likely to be multifactorial, the high prevalence of genotype B in Victoria may suggest it is less pathogenic. All but three koalas had genotypes unique to southern koala populations (i.e. Victoria and South Australia). These included a novel genotype and two genotypes associated with livestock. Regression analysis determined that significant factors for the presence of infection were sex and geographical location. The presence of ‘wet bottom’ in males and the presence of reproductive tract pathology in females were significantly associated with infection, suggesting variation in clinical disease manifestations between sexes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000241
2016-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/5/420.html?itemId=/content/journal/jmm/10.1099/jmm.0.000241&mimeType=html&fmt=ahah

References

  1. Bachmann N. L., Sullivan M. J., Jelocnik M., Myers G. S. A., Timms P., Polkinghorne A. 2015; Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum . J Clin Microbiol 53:1573–1581 [View Article][PubMed]
    [Google Scholar]
  2. Brown A. S., Carrick F. N., Gordon G., Reynolds K. 1984; The diagnosis and epidemiology of an infertility disease in the female koala Phascolarctos cinereus (Marsupialia). Vet Radiol 25:242–248 [View Article]
    [Google Scholar]
  3. de Oliveira S. M., Murray P. J., de Villiers D. L., Baxter G. S. 2014; Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust Mammal 36:45–54 [View Article]
    [Google Scholar]
  4. Denner J. 2014; Immunization with envelope proteins of the KoRV as a basis for a preventive vaccine. Tech Rep Aust Mus 24:71–77 [View Article]
    [Google Scholar]
  5. Dickens R. K. 1976; The koala in health and disease. In Refresher Course for Veterinarians Proceedings 29 pp 105–117 Sydney: Taronga Zoo/The University of Sydney;
    [Google Scholar]
  6. Fitch W. M., Peterson E. M., de la Maza L. M. 1993; Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development. Mol Biol Evol 10:892–913[PubMed]
    [Google Scholar]
  7. Griffith J. E. 2010 Studies into the diagnosis, treatment and management of chlamydiosis in koalas PhD Thesis, The University of Sydney, Sydney, New South Wales, Australia.
    [Google Scholar]
  8. Harris S. R., Clarke I. N., Seth-Smith H. M. B., Solomon A. W., Cutcliffe L. T., Marsh P., Skilton R. J., Holland M. J., Mabey D., other authors. 2012; Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 44:413–419 , S1 [View Article][PubMed]
    [Google Scholar]
  9. Higgins D. P., Beninati T., Meek M., Irish J., Griffith J. E. 2012; Within-population diversity of koala Chlamydophila pecorum at ompA VD1-VD3 and the ORF663 hypothetical gene. Vet Microbiol 156:353–358 [View Article][PubMed]
    [Google Scholar]
  10. Jackson M., Giffard P., Timms P. 1997; Outer membrane protein A gene sequencing demonstrates the polyphyletic nature of koala Chlamydia pecorum isolates. Syst Appl Microbiol 20:187–200 [View Article]
    [Google Scholar]
  11. Jackson M., White N., Giffard P., Timms P. 1999; Epizootiology of Chlamydia infections in two free-range koala populations. Vet Microbiol 65:255–264 [View Article][PubMed]
    [Google Scholar]
  12. Jelocnik M., Frentiu F. D., Timms P., Polkinghorne A. 2013; Multilocus sequence analysis provides insights into molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle, and koalas. J Clin Microbiol 51:2625–2632 [View Article][PubMed]
    [Google Scholar]
  13. Jelocnik M., Walker E., Pannekoek Y., Ellem J., Timms P., Polkinghorne A. 2014; Evaluation of the relationship between Chlamydia pecorum sequence types and disease using a species-specific multi-locus sequence typing scheme (MLST). Vet Microbiol 174:214–222 [View Article][PubMed]
    [Google Scholar]
  14. Jelocnik M., Bachmann N. L., Kaltenboeck B., Waugh C., Woolford L., Speight K. N., Gillett A., Higgins D. P., Flanagan C., other authors. 2015; Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics 16:893 [View Article][PubMed]
    [Google Scholar]
  15. Johnson R. N., Hobbs M., Eldridge M. D. B., King A. G., Colgan D. J., Wilkins M. R., Chen Z., Prentis P. J., Pavasovic A., other authors. 2014; The Koala Genome Consortium. Tech Rep Aust Mus 24:91–92 [View Article]
    [Google Scholar]
  16. Kollipara A., Polkinghorne A., Wan C., Kanyoka P., Hanger J., Loader J., Callaghan J., Bell A., Ellis W., other authors. 2013; Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet Microbiol 167:513–522 [View Article][PubMed]
    [Google Scholar]
  17. Lau Q., Griffith J. E., Higgins D. P. 2014; Identification of MHCII variants associated with chlamydial disease in the koala (Phascolarctos cinereus). PeerJ 2:e443 [View Article][PubMed]
    [Google Scholar]
  18. Legione A. R., Amery-Gale J., Lynch M., Haynes L., Gilkerson J. R., Sansom F. M., Devlin J. M. 2016; Chlamydia pecorum infection in free-ranging koalas (Phascolarctos cinereus) on French Island, Victoria, Australia. J Wildl Dis 52: [View Article] [Epub ahead of print]
    [Google Scholar]
  19. Lunney D., Gresser S., O'Neill L. E., Matthews A., Rhodes J. 2007; The Impact of fire and dogs on koalas at Port Stephens, New South Wales, using population viability analysis. Pac Conserv Biol 13:189–201
    [Google Scholar]
  20. Marsh J., Kollipara A., Timms P., Polkinghorne A. 2011; Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus). BMC Microbiol 11:77 [View Article][PubMed]
    [Google Scholar]
  21. Martin R. W. 1981; Age-specific fertility in three populations of the koala, Phascolarctos cinereus Goldfuss, in Victoria. Wildl Res 8:275–283 [View Article]
    [Google Scholar]
  22. Martin R. W. 1989 Draft Management Plan for the Conservation of the Koala (Phascolarctos cinereus) in Victoria Melbourne: Arthur Rylah Institute for Environmental Research;
    [Google Scholar]
  23. Martin R. W., Handasyde K. A. 1999 The Koala: Natural History, Conservation and Management, 2nd edn. Sydney: UNSW Press;
    [Google Scholar]
  24. McColl K. A., Martin R. W., Gleeson L. J., Handasyde K. A., Lee A. K. 1984; Chlamydia infection and infertility in the female koala (Phascolarctos cinereus). Vet Rec 115:655 [View Article][PubMed]
    [Google Scholar]
  25. Mohamad K. Y., Kaltenboeck B., Rahman Kh. S., Magnino S., Sachse K., Rodolakis A. 2014; Host adaptation of Chlamydia pecorum towards low virulence evident in co-evolution of the ompA, incA, and ORF663 loci. PLoS One 9:e103615 [View Article][PubMed]
    [Google Scholar]
  26. Obendorf D. L. 1981; Pathology of the female reproductive tract in the koala, Phascolarctos cinereus (Goldfuss), from Victoria, Australia. J Wildl Dis 17:587–592 [View Article][PubMed]
    [Google Scholar]
  27. O'Connell C. M., Ingalls R. R., Andrews C.W., Jr, Scurlock A. M., Darville T. 2007; Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 179:4027–4034 [View Article][PubMed]
    [Google Scholar]
  28. Patterson J. L. S., Lynch M., Anderson G. A., Noormohammadi A. H., Legione A., Gilkerson J. R., Devlin J. M. 2015; The prevalence and clinical significance of Chlamydia infection in island and mainland populations of Victorian koalas (Phascolarctos cinereus). J Wildl Dis 51:309–317 [View Article][PubMed]
    [Google Scholar]
  29. Polkinghorne A., Hanger J., Timms P. 2013; Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet Microbiol 165:214–223 [View Article][PubMed]
    [Google Scholar]
  30. Robertson T., Bibby S., O'Rourke D., Belfiore T., Lambie H., Noormohammadi A. H. 2009; Characterization of Chlamydiaceae species using PCR and high resolution melt curve analysis of the 16S rRNA gene. J Appl Microbiol 107:2017–2028 [View Article][PubMed]
    [Google Scholar]
  31. Shojima T., Yoshikawa R., Hoshino S., Shimode S., Nakagawa S., Ohata T., Nakaoka R., Miyazawa T. 2013; Identification of a novel subgroup of Koala retrovirus from Koalas in Japanese zoos. J Virol 87:9943–9948 [View Article][PubMed]
    [Google Scholar]
  32. Simmons G. S., Young P. R., Hanger J. J., Jones K., Clarke D., McKee J. J., Meers J. 2012; Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J 90:404–409 [View Article][PubMed]
    [Google Scholar]
  33. Stalder K., Vaz P. K., Gilkerson J. R., Baker R., Whiteley P., Ficorilli N., Tatarczuch L., Portas T., Skogvold K., other authors. 2015; Prevalence and clinical significance of herpesvirus infection in populations of Australian marsupials. PLoS One 10:e0133807 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  35. Troughton E. 1941 Furred Animals of Australia Sydney: Angus & Roberson;
    [Google Scholar]
  36. Wilson D. P., Craig A. P., Hanger J., Timms P. 2015; The paradox of euthanizing koalas (Phascolarctos cinereus) to save populations from elimination. J Wildl Dis 51:833–842 [View Article][PubMed]
    [Google Scholar]
  37. Yousef Mohamad K., Roche S. M., Myers G., Bavoil P. M., Laroucau K., Magnino S., Laurent S., Rasschaert D., Rodolakis A. 2008; Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. Infect Genet Evol 8:764–771 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000241
Loading
/content/journal/jmm/10.1099/jmm.0.000241
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error