1887

Abstract

is an animal-adapted member of the complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available genome sequences. These data also confirm that the vole and clinical isolates were all lacking the specific RD1 region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette–Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain’s vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1 region.

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award ANR-10-INBS-09-09)
    • Principle Award Recipient: LaurenceMa
  • Institut Pasteur (Award Pasteur-Roux-Cantarini postdoctoral fellowship program)
    • Principle Award Recipient: MickaelOrgeur
  • Fondation pour la Recherche Médicale (Award SPF20160936136)
    • Principle Award Recipient: MickaelOrgeur
  • Agence Nationale de la Recherche (Award ANR-10-LABX-62-IBEID)
    • Principle Award Recipient: RolandBrosch
  • Agence Nationale de la Recherche (Award ANR-16-CE35-0009)
    • Principle Award Recipient: RolandBrosch
  • Horizon 2020 Framework Programme (Award 260872)
    • Principle Award Recipient: RolandBrosch
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000505
2021-02-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/2/mgen000505.html?itemId=/content/journal/mgen/10.1099/mgen.0.000505&mimeType=html&fmt=ahah

References

  1. Malone KM, Gordon SV. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. Adv Exp Med Biol 2017; 1019:135–154
    [Google Scholar]
  2. Orgeur M, Brosch R. Evolution of virulence in the Mycobacterium tuberculosis complex. Curr Opin Microbiol 2018; 41:68–75
    [Google Scholar]
  3. Wells AQ. Tuberculosis in wild voles. Lancet 1937; 229:1221 [View Article]
    [Google Scholar]
  4. Wells AQ. Mycobacterium tuberculosis var. muris . J Gen Microbiol 1953; 9:149 [View Article][PubMed]
    [Google Scholar]
  5. Cavanagh R, Begon M, Bennett M, Ergon T, Graham IM. Mycobacterium microti infection (vole tuberculosis) in wild rodent populations. J Clin Microbiol 2002; 40:3281–3285
    [Google Scholar]
  6. Huitema H, Jaartsveld FHJ. Mycobacterium microti infection in a cat and some pigs. Antonie Van Leeuwenhoek 1967; 33:209–212 [View Article]
    [Google Scholar]
  7. Smith NH, Crawshaw T, Parry J, Birtles RJ. Mycobacterium microti: more diverse than previously thought. J Clin Microbiol 2009; 47:2551–2559
    [Google Scholar]
  8. Michelet L, de Cruz K, Zanella G, Aaziz R, Bulach T. Infection with Mycobacterium microti in animals in France. J Clin Microbiol 2015; 53:981–985
    [Google Scholar]
  9. Boniotti MB, Gaffuri A, Gelmetti D, Tagliabue S, Chiari M. Detection and molecular characterization of Mycobacterium microti isolates in wild boar from northern Italy. J Clin Microbiol 2014; 52:2834–2843
    [Google Scholar]
  10. Oevermann A, Pfyffer GE, Zanolari P, Meylan M, Robert N. Generalized tuberculosis in llamas (Lama glama) due to Mycobacterium microti . J Clin Microbiol 2004; 42:1818–1821 [View Article][PubMed]
    [Google Scholar]
  11. Zanolari P, Robert N, Lyashchenko KP, Pfyffer GE, Greenwald R. Tuberculosis caused by Mycobacterium microti in South American camelids. J Vet Intern Med 2009; 23:1266–1272
    [Google Scholar]
  12. Henrich M, Moser I, Weiss A, Reinacher M. Multiple granulomas in three squirrel monkeys (Saimiri sciureus) caused by Mycobacterium microti . J Comp Pathol 2007; 137:245–248
    [Google Scholar]
  13. Palgrave CJ, Benato L, Eatwell K, Laurenson IF, Smith NH. Mycobacterium microti infection in two meerkats (Suricata suricatta). J Comp Pathol 2012; 146:278–282
    [Google Scholar]
  14. Kipar A, Burthe SJ, Hetzel U, Rokia MA, Telfer S. Mycobacterium microti tuberculosis in its maintenance host, the field vole (Microtus agrestis): characterization of the disease and possible routes of transmission. Vet Pathol 2014; 51:903–914
    [Google Scholar]
  15. Horstkotte MA, Sobottka I, Schewe CK, Schafer P, Laufs R. Mycobacterium microti llama-type infection presenting as pulmonary tuberculosis in a human immunodeficiency virus-positive patient. J Clin Microbiol 2001; 39:406–407
    [Google Scholar]
  16. van Soolingen D, Noordhoek GT, Reiss P. Pulmonary tuberculosis due to Mycobacterium microti in a human immunodeficiency virus-infected patient. Clin Infect Dis 1998; 27:1543–1544 [View Article][PubMed]
    [Google Scholar]
  17. van Soolingen D, van der Zanden AG, de Haas PE, Noordhoek GT, Kiers A et al. Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol 1998; 36:1840–1845 [View Article][PubMed]
    [Google Scholar]
  18. Niemann S, Richter E, Dalugge-Tamm H, Schlesinger H, Graupner D. Two cases of Mycobacterium microti derived tuberculosis in HIV-negative immunocompetent patients. Emerg Infect Dis 2000; 6:539–542
    [Google Scholar]
  19. de Jong E, Rentenaar RJ, van Pelt R, de Lange W, Schreurs W. Two cases of Mycobacterium microti-induced culture-negative tuberculosis. J Clin Microbiol 2009; 47:3038–3040
    [Google Scholar]
  20. van de Weg CAM, de Steenwinkel JEM, Miedema JR, Bakker M, van Ingen J et al. The tough process of unmasking the slow-growing mycobacterium: case report of Mycobacterium microti infection. Access Microbiol 2020; 2:acmi000074 [View Article][PubMed]
    [Google Scholar]
  21. Kremer K, van Soolingen D, van Embden J, Hughes S, Inwald J. Mycobacterium microti: more widespread than previously thought. J Clin Microbiol 1998; 36:2793–2794
    [Google Scholar]
  22. Jenkins NE, Beadsworth MBJ, Anson JJ, Nye FJ, Martlew VJ et al. Immune restoration disease in HIV patient. Emerg Infect Dis 2006; 12:689–691 [View Article][PubMed]
    [Google Scholar]
  23. Xavier Emmanuel F, Seagar AL, Doig C, Rayner A, Claxton P. Human and animal infections with Mycobacterium microti, Scotland. Emerg Infect Dis 2007; 13:1924–1927
    [Google Scholar]
  24. McGoldrick C, Coghlin C, Seagar AL, Laurenson I, Smith NH et al. Mycobacterium microti infection associated with spindle cell pseudotumour and hypercalcaemia: a possible link with an infected alpaca. BMJ Case Rep 2010; 2010:2484bcr1120092484 [View Article][PubMed]
    [Google Scholar]
  25. Geiss HK, Feldhues R, Niemann S, Nolte O, Rieker R. Landouzy septicemia (sepsis tuberculosa acutissima) due to Mycobacterium microti in an immunocompetent man. Infection 2005; 33:393–396 [View Article][PubMed]
    [Google Scholar]
  26. Frank W, Reisinger EC, Brandt-Hamerla W, Schwede I, Handrick W. Mycobacterium microti – pulmonary tuberculosis in an immunocompetent patient. Wien Klin Wochenschr 2009; 121:282–286 [View Article][PubMed]
    [Google Scholar]
  27. Panteix G, Gutierrez MC, Boschiroli ML, Rouviere M, Plaidy A. Pulmonary tuberculosis due to Mycobacterium microti: a study of six recent cases in France. J Med Microbiol 2010; 59:984–989
    [Google Scholar]
  28. Ulmann V, Modrá H, Bartoš M, Caha J, Hübelová D et al. Epidemiology of selected Mycobacterium tuberculosis complex members in the Czech Republic in 2000-2016. Epidemiol Mikrobiol Imunol 2018; 67:184–190[PubMed]
    [Google Scholar]
  29. Maguga-Phasha NTC, Munyai NS, Mashinya F, Makgatho ME, Mbajiorgu EF. Genetic diversity and distribution of Mycobacterium tuberculosis genotypes in Limpopo, South Africa. BMC Infect Dis 2017; 17:764
    [Google Scholar]
  30. Brodin P, Eiglmeier K, Marmiesse M, Billault A, Garnier T et al. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun 2002; 70:5568–5578 [View Article][PubMed]
    [Google Scholar]
  31. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti . Mol Microbiol 2002; 46:709–717
    [Google Scholar]
  32. Garcia-Pelayo MC, Caimi KC, Inwald JK, Hinds J, Bigi F et al. Microarray analysis of Mycobacterium microti reveals deletion of genes encoding PE-PPE proteins and ESAT-6 family antigens. Tuberculosis 2004; 84:159–166 [View Article][PubMed]
    [Google Scholar]
  33. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis . J Bacteriol 1996; 178:1274–1282 [View Article][PubMed]
    [Google Scholar]
  34. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 1999; 284:1520–1523
    [Google Scholar]
  35. Wells AQ. Vaccination with the murine type of tubercle bacillus (vole bacillus). Lancet 1949; 2:53–55 [View Article][PubMed]
    [Google Scholar]
  36. Hart PD, Sutherland I. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J 1977; 2:293–295
    [Google Scholar]
  37. Sula L, Radkovský I. Protective effects of M. microti vaccine against tuberculosis. J Hyg Epidemiol Microbiol Immunol 1976; 20:1–6[PubMed]
    [Google Scholar]
  38. Sula L, Zavadilova Z, Medulanova L, Pokorny J. [New vaccine against tuberculosis. II. Characteristics of the strain, Mycobacterium tuberculosis, murine type-Wells OV 166, and preparation of the vaccine]. Cas Lek Cesk 1952; 91:161–171[PubMed]
    [Google Scholar]
  39. Dhillon J, Mitchison DA. Activity and penetration of antituberculosis drugs in mouse peritoneal macrophages infected with Mycobacterium microti OV254. Antimicrob Agents Chemother 1989; 33:1255–1259 [View Article][PubMed]
    [Google Scholar]
  40. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J et al. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 2005; 56:163–174 [View Article][PubMed]
    [Google Scholar]
  41. Minnikin DE, Dobson G, Parlett JH, Goodfellow M, Magnusson M. Analysis of dimycocerosates of glycosylphenolphthiocerols in the identification of some clinically significant mycobacteria. Eur J Clin Microbiol 1987; 6:703–707 [View Article][PubMed]
    [Google Scholar]
  42. Sharp K. Mycobacterium microti (vole bacillus): a method for viable counts within 21 days of culture. Appl Microbiol 1973; 25:1023–1024 [View Article][PubMed]
    [Google Scholar]
  43. Brodin P, Majlessi L, Brosch R, Smith D, Bancroft G. Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens. J Infect Dis 2004; 190:115–122
    [Google Scholar]
  44. Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus . Mol Microbiol 2013; 90:612–629 [View Article][PubMed]
    [Google Scholar]
  45. Zhu L, Zhong J, Jia X, Liu G, Kang Y et al. Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology. Nucleic Acids Res 2016; 44:730–743 [View Article][PubMed]
    [Google Scholar]
  46. Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front Microbiol 2018; 9:fmicb.2018.02820 [View Article][PubMed]
    [Google Scholar]
  47. Malm S, Linguissi LSG, Tekwu EM, Vouvoungui JC, Kohl TA et al. New Mycobacterium tuberculosis complex sublineage, Brazzaville, Congo. Emerg Infect Dis 2017; 23:423–429 [View Article][PubMed]
    [Google Scholar]
  48. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article][PubMed]
    [Google Scholar]
  49. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 2007; 104:5596–5601
    [Google Scholar]
  50. Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF et al. Medusa: a multi-draft based scaffolder. Bioinformatics 2015; 31:2443–2451 [View Article][PubMed]
    [Google Scholar]
  51. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  52. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  53. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. blast+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  54. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  55. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393:537–544
    [Google Scholar]
  56. Malone KM, Farrell D, Stuber TP, Schubert OT, Aebersold R et al. Updated reference genome sequence and annotation of Mycobacterium bovis AF2122/97. Genome Announc 2017; 5:e00157-17 [View Article][PubMed]
    [Google Scholar]
  57. Farrer RA. Synima: a synteny imaging tool for annotated genome assemblies. BMC Bioinformatics 2017; 18:507 [View Article][PubMed]
    [Google Scholar]
  58. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article][PubMed]
    [Google Scholar]
  59. Haas BJ, Delcher AL, Wortman JR, Salzberg SL. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 2004; 20:3643–3646 [View Article][PubMed]
    [Google Scholar]
  60. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 20131303.3997
    [Google Scholar]
  61. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  62. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079
    [Google Scholar]
  63. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22:568–576
    [Google Scholar]
  64. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article][PubMed]
    [Google Scholar]
  65. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940
    [Google Scholar]
  66. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  67. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645
    [Google Scholar]
  68. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  69. Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Davila Felipe M. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456
    [Google Scholar]
  70. Yu G, Smith DK, Zhu H, Guan Y, Lam Tommy Tsan‐Yuk. ggtree : an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  71. Houben EN, Bestebroer J, Ummels R, Wilson L, Piersma SR. Composition of the type VII secretion system membrane complex. Mol Microbiol 2012; 86:472–484
    [Google Scholar]
  72. Ates LS, Dippenaar A, Sayes F, Pawlik A, Bouchier C et al. Unexpected genomic and phenotypic diversity of Mycobacterium africanum lineage 5 affects drug resistance, protein secretion, and immunogenicity. Genome Biol Evol 2018; 10:1858–1874 [View Article][PubMed]
    [Google Scholar]
  73. Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis . Nat Microbiol 2018; 3:181–188 [View Article][PubMed]
    [Google Scholar]
  74. Ates LS, Sayes F, Frigui W, Ummels R, Damen MPM et al. RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathog 2018; 14:e1007139 [View Article][PubMed]
    [Google Scholar]
  75. Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 2009; 73:329–340 [View Article][PubMed]
    [Google Scholar]
  76. Alderson MR, Bement T, Day CH, Zhu L, Molesh D. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T cells. J Exp Med 2000; 191:551–560
    [Google Scholar]
  77. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 2006; 62:667–679
    [Google Scholar]
  78. Terry M, Therneau PMG. Modeling Survival Data: Extending the Cox Model New York: Springer; 2000
    [Google Scholar]
  79. Williams A, Hatch GJ, Clark SO, Gooch KE, Hatch KA et al. Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis 2005; 85:29–38 [View Article][PubMed]
    [Google Scholar]
  80. Bottai D, Frigui W, Clark S, Rayner E, Zelmer A. Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine 2015; 33:2710–2718
    [Google Scholar]
  81. Williams A, James BW, Bacon J, Hatch KA, Hatch GJ et al. An assay to compare the infectivity of Mycobacterium tuberculosis isolates based on aerosol infection of guinea pigs and assessment of bacteriology. Tuberculosis 2005; 85:177–184 [View Article][PubMed]
    [Google Scholar]
  82. Homolka S, Projahn M, Feuerriegel S, Ubben T, Diel R. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One 2012; 7:e39855
    [Google Scholar]
  83. van Embden JD, van Gorkom T, Kremer K, Jansen R, van Der Zeijst BA et al. Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 2000; 182:2393–2401 [View Article][PubMed]
    [Google Scholar]
  84. McEvoy CR, van Helden PD, Warren RM, Gey van Pittius NC. Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol 2009; 9:237
    [Google Scholar]
  85. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 2002; 99:3684–3689
    [Google Scholar]
  86. Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 2004; 150:483–496
    [Google Scholar]
  87. Garces A, Atmakuri K, Chase MR, Woodworth JS, Krastins B. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 2010; 6:e1000957
    [Google Scholar]
  88. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 2003; 100:12420–12425
    [Google Scholar]
  89. Lefebvre C, Frigui W, Slama N, Lauzeral-Vizcaino F, Constant P. Discovery of a novel dehydratase of the fatty acid synthase type II critical for ketomycolic acid biosynthesis and virulence of Mycobacterium tuberculosis . Sci Rep 2020; 10:2112
    [Google Scholar]
  90. Groschel MI, Sayes F, Shin SJ, Frigui W, Pawlik A. Recombinant BCG expressing ESX-1 of Mycobacterium marinum combines low virulence with cytosolic immune signaling and improved TB protection. Cell Rep 2017; 18:2752–2765
    [Google Scholar]
  91. Clark S, Hall Y, Williams A. Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 2015; 5:a018572 [View Article]
    [Google Scholar]
  92. Hesseling AC, Marais BJ, Gie RP, Schaaf HS, Fine PE. The risk of disseminated Bacille Calmette-Guerin (BCG) disease in HIV-infected children. Vaccine 2007; 25:14–18
    [Google Scholar]
  93. Burthe S, Bennett M, Kipar A, Lambin X, Smith A. Tuberculosis (Mycobacterium microti) in wild field vole populations. Parasitology 2008; 135:309–317
    [Google Scholar]
  94. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis . Nat Rev Microbiol 2009; 7:537–544
    [Google Scholar]
  95. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Molec Microbiol 1999; 32:643–656
    [Google Scholar]
  96. Vera-Cabrera L, Hernández-Vera MA, Welsh O, Johnson WM, Castro-Garza J. Phospholipase region of Mycobacterium tuberculosis is a preferential locus for IS6110 transposition. J Clin Microbiol 2001; 39:3499–3504
    [Google Scholar]
  97. Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol 2002; 45:203–217
    [Google Scholar]
  98. Le Chevalier F, Cascioferro A, Frigui W, Pawlik A, Boritsch EC. Revisiting the role of phospholipases C in the virulence of Mycobacterium tuberculosis . Sci Rep 2015; 5:16918
    [Google Scholar]
  99. Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I. An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep 2017; 7:46666
    [Google Scholar]
  100. Collins DM, Kawakami RP, Buddle BM, Wards BJ, de Lisle GW. Different susceptibility of two animal species infected with isogenic mutants of Mycobacterium bovis identifies phoT as having roles in tuberculosis virulence and phosphate transport. Microbiology 2003; 149:3203–3212 [View Article][PubMed]
    [Google Scholar]
  101. Calmette A. Preventive vaccination against tuberculosis with BCG. Proc R Soc Med 1931; 24:1481–1490 [View Article]
    [Google Scholar]
  102. Zhang L, Ru H, Chen F, Jin C, Sun R. Variable virulence and efficacy of BCG vaccine strains in mice and correlation with genome polymorphisms. Mol Ther 2016; 24:398–405 [View Article]
    [Google Scholar]
  103. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD et al. Novel Mycobacterium tuberculosis complex pathogen, M. mungi . Emerg Infect Dis 010; 16:1296–1299 [View Article]
    [Google Scholar]
  104. Mostowy S, Cousins D, Behr MA. Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J Bacteriol 2004; 186:104–109 [View Article]
    [Google Scholar]
  105. Parsons SDC, Drewe JA, Gey van Pittius NC, Warren RM, van Helden PD. Novel cause of tuberculosis in meerkats, South Africa. Emerg Infect Dis 2013; 19:2004–2007 [View Article][PubMed]
    [Google Scholar]
  106. Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014; 26:454–470 [View Article][PubMed]
    [Google Scholar]
  107. Alexander KA, Sanderson CE, Larsen MH, Robbe-Austerman S, Williams MC et al. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mon Tuberculosis Pathogen Hijacks Social Communication Behavior in the Group-Living Banded goose (Mungos mungo). MBio 2016; 7:e00281-16 [View Article]
    [Google Scholar]
  108. Hesseling AC, Cotton MF, Fordham von Reyn C, Graham SM, Gie RP. Consensus statement on the revised World Health Organization recommendations for BCG vaccination in HIV-infected infants. Int J Tuberc Lung Dis 2008; 12:1376–1379
    [Google Scholar]
  109. Crum-Cianflone NF, Sullivan E. Vaccinations for the HIV-infected adult: a review of the current recommendations, part II. Infect Dis Ther 2017; 6:333–361 [View Article]
    [Google Scholar]
  110. Kiers A, Klarenbeek A, Mendelts B, Van Soolingen D, Koeter G. Transmission of Mycobacterium pinnipedii to humans in a zoo with marine mammals. Int J Tuberc Lung Dis 2008; 12:1469–1473
    [Google Scholar]
  111. Berg S, Smith NH. Why doesn't bovine tuberculosis transmit between humans?. Trends Microbiol 2014; 22:552–553 [View Article][PubMed]
    [Google Scholar]
  112. Behr MA, Gordon SV. Why doesn't Mycobacterium tuberculosis spread in animals?. Trends Microbiol 2015; 23:1–2 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000505
Loading
/content/journal/mgen/10.1099/mgen.0.000505
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error