1887

Abstract

Endolithic microbial symbionts in the coral skeleton may play a pivotal role in maintaining coral health. However, compared to aerobic micro-organisms, research on the roles of endolithic anaerobic micro-organisms and microbe–microbe interactions in the coral skeleton are still in their infancy. In our previous study, we showed that a group of coral-associated (CAP), a genus of anaerobic green sulphur bacteria, was dominant in the skeleton of the coral . Though CAP is diverse, the 16S rRNA phylogeny presents it as a distinct clade separate from other free-living . In this study, we build on previous research and further characterize the genomic and metabolic traits of CAP by recovering two new high-quality CAP genomes – Prosthecochloris isoporae and Prosthecochloris sp. N1 – from the coral endolithic cultures. Genomic analysis revealed that these two CAP genomes have high genomic similarities compared with other and harbour several CAP-unique genes. Interestingly, different CAP species harbour various pigment synthesis and sulphur metabolism genes, indicating that individual CAPs can adapt to a diversity of coral microenvironments. A novel high-quality genome of sulfate-reducing bacterium (SRB)– Halodesulfovibrio lyudaonia – was also recovered from the same culture. The fact that CAP and various SRB co-exist in coral endolithic cultures and coral skeleton highlights the importance of SRB in the coral endolithic community. Based on functional genomic analysis of . P. sp. N1, . P. isoporae and . H. lyudaonia, we also propose a syntrophic relationship between the SRB and CAP in the coral skeleton.

Funding
This study was supported by the:
  • Ministry of Science and Technology, Taiwan (Award 105-2621-B-001-004-MY3)
    • Principle Award Recipient: Sen-LinTang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000574
2021-05-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/5/mgen000574.html?itemId=/content/journal/mgen/10.1099/mgen.0.000574&mimeType=html&fmt=ahah

References

  1. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 2007; 5:355–362 [View Article]
    [Google Scholar]
  2. Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun 2018; 9:4921 [View Article]
    [Google Scholar]
  3. Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep 2019; 9:6785 [View Article]
    [Google Scholar]
  4. van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 2019; 17:557–567 [View Article]
    [Google Scholar]
  5. Gordon BR, Leggat W. Symbiodinium—Invertebrate symbioses and the role of metabolomics. Mar Drugs 2010; 8:2546–2568 [View Article]
    [Google Scholar]
  6. Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 2007; 346:143–152 [View Article]
    [Google Scholar]
  7. Cai L, Zhou G, Tian R-M, Tong H, Zhang W et al. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep 2017; 7: [View Article]
    [Google Scholar]
  8. Koren O, Rosenberg E. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 2006; 72:5254–5259 [View Article]
    [Google Scholar]
  9. Reis AMM, Araújo Jr SD, Moura RL, Francini-Filho RB, Pappas Jr G et al. Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J Appl Microbiol 2009; 106:1378–1387 [View Article]
    [Google Scholar]
  10. ZY L, Wang YZ, LM H, Zheng HJ. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics (Vol 4, 3895, 2014). Sci Rep-Uk 2015; 5:
    [Google Scholar]
  11. Yang S-H, Tandon K, Lu C-Y, Wada N, Shih C-J et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 2019; 7: [View Article]
    [Google Scholar]
  12. del Campo J, Pombert J-F, Slapeta J, Larkum A, Keeling PJ. The ‘other’ coral symbiont: Ostreobium diversity and distribution. Isme J 2017; 11:296–299 [View Article]
    [Google Scholar]
  13. Yang S-H, Lee STM, Huang C-R, Tseng C-H, Chiang P-W et al. Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol Oceanogr 2016; 61:1078–1086 [View Article]
    [Google Scholar]
  14. Schlichter D, Kampmann H, Conrady S. Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar Ecol 1997; 18:299–317 [View Article]
    [Google Scholar]
  15. Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond B 2002; 269:1205–1210 [View Article]
    [Google Scholar]
  16. Imhoff JF. Biology of Green Sulfur Bacteria Chichester: eLS John Wiley & Sons, Ltd; 2014
    [Google Scholar]
  17. Crowe SA, Hahn AS, Morgan-Lang C, Thompson KJ, Simister RL et al. Draft genome sequence of the pelagic photoferrotroph Chlorobium phaeoferrooxidans. Genome Announc 2017; 5: [View Article]
    [Google Scholar]
  18. Heising S, Richter L, Ludwig W, Schink B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain. Arch Microbiol 1999; 172:116–124 [View Article]
    [Google Scholar]
  19. Thiel V, Tank M, Bryant DA. Diversity of Chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 2018; 69:21–49 [View Article]
    [Google Scholar]
  20. Biebl H, Pfennig N. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 1978; 117:9–16 [View Article]
    [Google Scholar]
  21. Pernice M, Raina JB, Radecker N, Cardenas A, Pogoreutz C. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. Isme J 2019
    [Google Scholar]
  22. Zyakun AM, Lunina ON, Prusakova TS, Pimenov NV, Ivanov MV. Fractionation of stable carbon isotopes by photoautotrophically growing anoxygenic purple and green sulfur bacteria. Microbiology 2009; 78:757–768 [View Article]
    [Google Scholar]
  23. S. A FastQC: a quality control tool for high throughput sequence data; 2010
  24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  25. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article]
    [Google Scholar]
  26. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015; 3:e1165 [View Article][PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  28. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  31. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  32. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 2019
    [Google Scholar]
  33. Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 2017; 45:D320–D324 [View Article]
    [Google Scholar]
  34. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016
    [Google Scholar]
  35. Kolde R. pheatmap: Pretty Heatmaps. R package version 1012; 2019
  36. Pruitt KD, Tatusova T, Brown GR, Maglott DR. Ncbi reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012; 40:D130–D135 [View Article]
    [Google Scholar]
  37. Seemann T. barrnap 0.9: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap.
  38. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  39. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  40. TH J, CR C. Evolution of protein molecules. Mammalian Protein Metabolism 1969 pp 21–132
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  42. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992; 8:275–282 [View Article]
    [Google Scholar]
  43. YW W. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:921
    [Google Scholar]
  44. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  45. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  46. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article]
    [Google Scholar]
  47. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  48. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article]
    [Google Scholar]
  49. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010; 26:2460–2461 [View Article]
    [Google Scholar]
  50. Bryantseva IA, Tarasov AL, Kostrikina NA, Gaisin VA, Grouzdev DS et al. Prosthecochloris marina sp. nov., a new green sulfur bacterium from the coastal zone of the South China Sea. Arch Microbiol 2019; 201:1399–1404 [View Article][PubMed]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  52. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Research 2016; 44:
    [Google Scholar]
  53. Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E et al. The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline. Environ Microbiol 2013; 15:2082–2094 [View Article]
    [Google Scholar]
  54. Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68–86 [View Article]
    [Google Scholar]
  55. Montesinos E, Guerrero R, Abella C, Esteve I. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 1983; 46:1007–1016 [View Article]
    [Google Scholar]
  56. Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M et al. Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll E biosynthesis of brown-colored green sulfur bacteria. PLoS One 2013; 8:e60026 [View Article]
    [Google Scholar]
  57. Ong RH, King AJC, Mullins BJ, Cooper TF, Caley MJ. Development and validation of computational fluid dynamics models for prediction of heat transfer and thermal microenvironments of corals. PLoS One 2012; 7:e37842 [View Article]
    [Google Scholar]
  58. Terán E, Méndez ER, Enríquez S, Iglesias-Prieto R. Multiple light scattering and absorption in reef-building corals. Appl Opt 2010; 49:5032–5042 [View Article]
    [Google Scholar]
  59. Brune DC. Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 1989; 975:189–221 [View Article]
    [Google Scholar]
  60. Frigaard NU, Dahl C. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 2009; 54:103–200
    [Google Scholar]
  61. Meyer B, Imhoff JF, Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the SOX sulfur oxidation enzyme system. Environ Microbiol 2007; 9:2957–2977 [View Article]
    [Google Scholar]
  62. Gregersen LH, Bryant DA, Frigaard N-U. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2011; 2:116 [View Article]
    [Google Scholar]
  63. Holkenbrink C, Barbas SO, Mellerup A, Otaki H, Frigaard N-U. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology 2011; 157:1229–1239 [View Article]
    [Google Scholar]
  64. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M et al. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 2002; 99:9509–9514 [View Article]
    [Google Scholar]
  65. Takii S, Hanada S, Hase Y, Tamaki H, Uyeno Y et al. Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids. Int J Syst Evol Microbiol 2008; 58:2433–2438 [View Article]
    [Google Scholar]
  66. Finster KW, Kjeldsen KU. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru. Antonie van Leeuwenhoek 2010; 97:221–229 [View Article]
    [Google Scholar]
  67. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. Int J Syst Evol Microbiol 2017; 67:87–93 [View Article]
    [Google Scholar]
  68. Riederer-Henderson M-A, Wilson PW. Nitrogen fixation by sulphate-reducing bacteria. J Gen Microbiol 1970; 61:27–31 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000574
Loading
/content/journal/mgen/10.1099/mgen.0.000574
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error