1887

Abstract

is an oral spirochaete that has been strongly associated with chronic periodontitis. The bacterium exists as part of a dense biofilm (subgingival dental plaque) accreted to the tooth. To determine gene products important for persistence as a biofilm we developed a continuous-culture biofilm model and conducted a genome-wide transcriptomic analysis of biofilm and planktonic cells. A total of 126 genes were differentially expressed with a fold change of 1.5 or greater. This analysis identified the upregulation of putative prophage genes in the 35405 genome. Intact bacteriophage particles were isolated from and circular phage DNA was detected by PCR analysis. This represents the first, to our knowledge, functional bacteriophage isolated from , which we have designated φtd1. In biofilm cells there was also an upregulation of genes encoding several virulence factors, toxin–antitoxin systems and a family of putative transposases. Together, these data indicate that there is a higher potential for genetic mobility in when growing as a biofilm and that these systems are important for the biofilm persistence and therefore virulence of this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033654-0
2010-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/774.html?itemId=/content/journal/micro/10.1099/mic.0.033654-0&mimeType=html&fmt=ahah

References

  1. Alm E. J., Huang K. H., Price M. N., Koche R. P., Keller K., Dubchak I. L., Arkin A. P. 2005; The MicrobesOnline Web site for comparative genomics. Genome Res 15:1015–1022
    [Google Scholar]
  2. Bamford C. V., Fenno J. C., Jenkinson H. F., Dymock D. 2007; The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun 75:4364–4372
    [Google Scholar]
  3. Bhagwat A. A., Phadke R. P., Wheeler D., Kalantre S., Gudipati M., Bhagwat M. 2003; Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. J Microbiol Methods 55:399–409
    [Google Scholar]
  4. Boles B. R., Thoendel M., Singh P. K. 2004; Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635
    [Google Scholar]
  5. Bond J. P., Francklyn C. 2000; Proteobacterial histidine-biosynthetic pathways are paraphyletic. J Mol Evol 50:339–347
    [Google Scholar]
  6. Brown J. R., Douady C. J., Italia M. J., Marshall W. E., Stanhope M. J. 2001; Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285
    [Google Scholar]
  7. Chan E. C. S., Siboo R., Touyz L. Z. G., Qiu Y., Klitorinos A. 1993; A successful method for quantifying viable oral anaerobic spirochetes. Oral Microbiol Immunol 8:80–83
    [Google Scholar]
  8. Chan E. C., De Ciccio A., McLaughlin R., Klitorinos A., Siboo R. 1997; An inexpensive solid medium for obtaining colony-forming units of oral spirochetes. Oral Microbiol Immunol 12:372–376
    [Google Scholar]
  9. Chu L., Kennell W., Holt S. C. 1994; Characterization of hemolysis and hemoxidation activities by Treponema denticola. Microb Pathog 16:183–195
    [Google Scholar]
  10. Dashper S. G., Ang C. S., Veith P. D., Mitchell H. L., Lo A. W., Seers C. A., Walsh K. A., Slakeski N., Chen D. other authors 2009; Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 191:1044–1055
    [Google Scholar]
  11. Demirkan I., Williams H. F., Dhawi A., Carter S. D., Winstanley C., Bruce K. D., Hart C. A. 2006; Characterization of a spirochaete isolated from a case of bovine digital dermatitis. J Appl Microbiol 101:948–955
    [Google Scholar]
  12. Eggers C. H., Samuels D. S. 1999; Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J Bacteriol 181:7308–7313
    [Google Scholar]
  13. Eggers C. H., Casjens S., Hayes S. F., Garon C. F., Damman C. J., Oliver D. B., Samuels D. S. 2000; Bacteriophages of spirochetes. J Mol Microbiol Biotechnol 2:365–373
    [Google Scholar]
  14. Ellen R. P., Galimanas V. B. 2005; Spirochetes at the forefront of periodontal infections. Periodontol2000 38:13–32
    [Google Scholar]
  15. Fenno J. C., Hannam P. M., Leung W. K., Tamura M., Uitto V.-J., McBride B. C. 1998; Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 66:1869–1877
    [Google Scholar]
  16. Fineran P. C., Blower T. R., Foulds I. J., Humphreys D. P., Lilley K. S., Salmond G. P. 2009; The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci U S A 106:894–899
    [Google Scholar]
  17. Gerdes K., Christensen S. K., Lobner-Olesen A. 2005; Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382
    [Google Scholar]
  18. Grenier D., Uitto V. J., McBride B. C. 1990; Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane. Infect Immun 58:347–351
    [Google Scholar]
  19. Humphrey S. B., Neil T. B. S., Jensen S. 1995; Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens. FEMS Microbiol Lett 134:97–101
    [Google Scholar]
  20. Humphrey S. B., Stanton T. B., Jensen N. S., Zuerner R. L. 1997; Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179:323–329
    [Google Scholar]
  21. Ibba M., Morgan S., Curnow A. W., Pridmore D. R., Vothknecht U. C., Gardner W., Lin W., Woese C. R., Soll D. 1997; A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122
    [Google Scholar]
  22. Kim Y., Wang X., Ma Q., Zhang X. S., Wood T. K. 2009; Toxin–antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191:1258–1267
    [Google Scholar]
  23. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J. Jr 2002; Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505
    [Google Scholar]
  24. Krupka H. I., Huber R., Holt S. C., Clausen T. 2000; Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5′-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J 19:3168–3178
    [Google Scholar]
  25. Leschine S. B., Canale-Parola E. 1980; Rifampin as a selective agent for isolation of oral spirochetes . J Clin Microbiol 12:792–795
    [Google Scholar]
  26. Lo A. W., Seers C. A., Boyce J. D., Dashper S. G., Slakeski N., Lissel J. P., Reynolds E. C. 2009; Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol 9:18
    [Google Scholar]
  27. Orth R., O'Brien-Simpson N., Dashper S., Walsh K., Reynolds E. 2010; An efficient method for enumerating oral spirochetes using flow cytometry. J Microbiol Methods 80:123–128
    [Google Scholar]
  28. Ramanculov E., Young R. 2001; An ancient player unmasked: T4 rl encodes a t-specific antiholin. Mol Microbiol 41:575–583
    [Google Scholar]
  29. Resch A., Fehrenbacher B., Eisele K., Schaller M., Götz F. 2005; Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett 252:89–96
    [Google Scholar]
  30. Rice S. A., Tan C. H., Mikkelsen P. J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J. S., Kjelleberg S. 2009; The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282
    [Google Scholar]
  31. Rosen G., Sela M. N., Naor R., Halabi A., Barak V., Shapira L. 1999; Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola. Infect Immun 67:1180–1186
    [Google Scholar]
  32. Saint Girons I., Margarita D., Amouriaux P., Baranton G. 1990; First isolation of bacteriophages for a spirochaete: potential genetic tools for Leptospira. Res Microbiol 141:1131–1138
    [Google Scholar]
  33. Schultz C. P., Wolf V., Lange R., Mertens E., Wecke J., Naumann D., Zahringer U. 1998; Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides . J Biol Chem 273:15661–15666
    [Google Scholar]
  34. Seshadri R., Myers G. S. A., Tettelin H., Eisen J. A., Heidelberg J. F., Dodson R. J., Davidsen T. M., DeBoy R. T., Fouts D. E. other authors 2004; Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101:5646–5651
    [Google Scholar]
  35. Setubal J. C., Reis M., Matsunaga J., Haake D. A. 2006; Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121
    [Google Scholar]
  36. Sevin E. W., Barloy-Hubler F. 2007; RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8:R155
    [Google Scholar]
  37. Shockley K. R., Scott K. L., Pysz M. A., Conners S. B., Johnson M. R., Montero C. I., Wolfinger R. D., Kelly R. M. 2005; Genome-wide transcriptional variation within and between steady states for continuous growth of the hyperthermophile Thermotoga maritima. Appl Environ Microbiol 71:5572–5576
    [Google Scholar]
  38. Smyth G. K. 2005; Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor pp 397–420 Edited by Gentleman R., Carey V. P., Huber W., Irizarry R. A., Dudoit S. New York: Springer;
    [Google Scholar]
  39. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144
    [Google Scholar]
  40. Summer E. J., Berry J., Tran T. A. T., Niu L., Struck D. K., Young R. 2007; Rz/ Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 373:1098–1112
    [Google Scholar]
  41. Tatusov R. L., Fedorova N., Jackson J., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L. other authors 2003; The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41
    [Google Scholar]
  42. Uetake H. 1979; The origin of conversion genes. In Molecular Basis of Host/Virus Interactions pp 365–377 Edited by Chakravarty M. Princeton, NJ: Science Press;
    [Google Scholar]
  43. Uitto V. J., Pan Y. M., Leung W. K., Larjava H., Ellen R. P., Finlay B. B., McBride B. C. 1995; Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun 63:3401–3410
    [Google Scholar]
  44. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034
    [Google Scholar]
  45. Vesey P. M., Kuramitsu H. K. 2004; Genetic analysis of Treponema denticola ATCC 35405 biofilm formation. Microbiology 150:2401–2407
    [Google Scholar]
  46. Webb J. S., Givskov M., Kjelleberg S. 2003; Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585
    [Google Scholar]
  47. Wolf Y. I., Rogozin I., Grishin N., Tatusov R., Koonin E. 2001; Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8
    [Google Scholar]
  48. Yamaguchi Y., Inouye M. 2009; mRNA interferases, sequence-specific endoribonucleases from the toxin–antitoxin systems. Prog Mol Biol Transl Sci 85:467–500
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033654-0
Loading
/content/journal/micro/10.1099/mic.0.033654-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error