1887

Abstract

Production of reactive oxygen species by redox cycling in the presence of low levels of oxygen has been studied as a possible approach to anti-protozoal chemotherapeutic strategy. Incubation of the diplomonad flagellate with 2-methy-1,4-naphthoquinone (menadione), under anaerobic conditions, gave UV absorption changes characteristic of reduction to menadiol; partial reversal was observed on admitting O. Under microaerobic conditions, similar to those on the surface of the jejunal mucosa, trophozoites consumed O rapidly in the presence of menadione; reaction products included singlet O (monitored by single photon counting of O-dependent low-level chemiluminescence) and HO (measured by the formation of Complex I of microperoxidase). Trophozoites became swollen and incapable of regulatory volume control; these irreversible responses led to loss of motility, cessation of flagellar activity and cell death. Comparison of the sensitivities of trophozoites to metronidazole and menadione gave LC values (μg ml) of 1·2 and 0·7, respectively; corresponding values for cysts (measured by excystation capacities) were >50 and 1·3. Menadione (LD in mice, 0·5 g kg) is therefore a potentially more useful and general anti-giardial agent than metronidazole, as it is active against cysts as well as trophozoites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26836-0
2004-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501231.html?itemId=/content/journal/micro/10.1099/mic.0.26836-0&mimeType=html&fmt=ahah

References

  1. Atkinson H. J. 1980; Respiration. In Nematodes as Biological Models pp. 101–138Edited by Zuckerman B. H. London: Academic Press;
    [Google Scholar]
  2. Biagini G. A., Park J. H., Lloyd D., Edwards M. R. 2001; The antioxidant potential of pyruvate in the amitochondriate diplomonads Giardia intestinalis and Hexamita inflata. Microbiology 147:3359–3365
    [Google Scholar]
  3. Bingham A. K., Meyer E. A. 1979; Giardia excystation can be induced in vitro in acidic solutions. Nature 277:301–302 [CrossRef]
    [Google Scholar]
  4. Breccia A., Cavalleri B., Omerod W. E. (editors) 1982; Nitroimidazoles. Chemistry, Pharmacology and Clinical Applications New York: Plenum;
    [Google Scholar]
  5. Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. M. 1977; Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257 [CrossRef]
    [Google Scholar]
  6. Cammack R., Horner D. S., van der Giezen M., Kulda J., Lloyd D. 2003; Iron–sulphur proteins in anaerobic eukaryotes. In Physiology and Biochemistry of Anaerobic Bacteria pp. 113–127Edited by Ljungdahl L., Adams M. W. W., Barton L. L., Ferry J. G., Johnson M. K. New York: Springer;
    [Google Scholar]
  7. Croft S. L., Evans A. T., Neal R. A. 1985; The activity of plumbagin and other electron carriers against Leishmania donovani and Leishmania mexicana amazonensis. Ann Trop Med Parasitol 79:651–653
    [Google Scholar]
  8. Croft S. L., Hogg J., Gutteridge W. E., Hudson A. T., Randall A. W. 1992; The activity of hydroxynaphthoquinones against Leishmania donovani. J Antimicrob Chemother 30:827–832 [CrossRef]
    [Google Scholar]
  9. Degn H., Lundsgaard J. S., Petersen L. C., Ormicki A. 1980; Polarographic measurements of steady state kinetics of oxygen uptake by biochemical samples. Methods Biochem Anal 26:47–77
    [Google Scholar]
  10. de Groot H., Noll T., Sies H. 1985; Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake. Studies with isolated hepatocytes, mitochondria, and microsomes from rat liver in an oxystat system. Arch Biochem Biophys 243:556–562 [CrossRef]
    [Google Scholar]
  11. Edwards M. R., Gilroy F. V., Jimenez B. M., O'Sullivan W. J. 1989; Alanine is a major end product of metabolism by Giardia lamblia: a protein nuclear magnetic resonance study. Mol Biochem Parasitol 37:19–26 [CrossRef]
    [Google Scholar]
  12. Ellis J. E., Williams R., Cole D., Cammack R., Lloyd D. 1993a; Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325:196–200 [CrossRef]
    [Google Scholar]
  13. Ellis J. E., Wingfield J. M., Cole D., Boreham P. F. L., Lloyd D. 1993b; Oxygen affinities of metromidazole-resistant and -sensitive stocks of Giardia intestinalis. Int J Parasitol 23:35–39 [CrossRef]
    [Google Scholar]
  14. Guillen F., Martinez M. J., Muñoz C., Martinez A. T. 1997; Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199 [CrossRef]
    [Google Scholar]
  15. Halliwell B., Gutteridge J. M. C. 1989 Free Radicals in Biology and Medicine Oxford: Oxford University Press;
  16. Jakubowski W., Craun G. F. 2002; Update on the control of Giardia in water supplies. In Giardia, the Cosmopolitan Parasite pp. 217–238Edited by Olson B. E. Olson M. E., Wallis P. M. Wallingford: CAB International;
    [Google Scholar]
  17. Jarroll E. L. 1988; Effect of disinfectants on Giardia cysts. Crit Rev Environ Control 18:1–28 [CrossRef]
    [Google Scholar]
  18. Keister D. B. 1983; Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:478–488
    [Google Scholar]
  19. Kulda J., Tachezy J., Cerkasovova A. 1993; In vitro induced anaerobic resistance to metronidazole inTrichomonas vaginalis. J Eukaryot Microbiol 40:262–269 [CrossRef]
    [Google Scholar]
  20. Lane S., Lloyd D. 2002; Current trends in research into waterborne parasite Giardia. Crit Rev Microbiol 28:123–147 [CrossRef]
    [Google Scholar]
  21. Lloyd D., Pedersen J. Z. 1985; Metronidazole radical anion generation in vivo in Trichonomas vaginalis: oxygen quenching is enhanced in a drug-resistant strain. J Gen Microbiol 131:87–92
    [Google Scholar]
  22. Lloyd D., Boveris A., Reiter R., Filipkowski M., Chance B. 1979; Chemiluminescence of Acanthamoeba castellanii. Biochem J 184:149–156
    [Google Scholar]
  23. Lloyd D., Harris J. C., Biagini G. A.8 other authors 2002; Oxygen homeostasis in Giardia. In Giardia, the Cosmopolitan Parasite pp. 31–46Edited by Olson B. E. Olson M. E., Wallis P. M. Wallingford: CAB International;
    [Google Scholar]
  24. Moreno S. N., Docampo R. 1985; Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis. Environ Health Perspect 64:199–208 [CrossRef]
    [Google Scholar]
  25. Moreno S. N. J., Mason R. P., Muniz R. P. A., Cruz F. S., Docampo R. 1983; Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus. J Biol Chem 258:4051–4054
    [Google Scholar]
  26. Moreno S. N. J., Mason R. P., Docampo R. 1984; Distinct reduction of nitrofurans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes. J Biol Chem 259:8252–8259
    [Google Scholar]
  27. Ortega Y. R., Adam R. D. 1997; Giardia: overview and update. Clin Infect Dis 25:545–550 [CrossRef]
    [Google Scholar]
  28. Paget T. A., Fry M., Lloyd D. 1987; Hydrogen peroxide production in uncoupled mitochondria of the parasitic nematode worm Nippostrongylus brasiliensis. Biochem J 243:589–595
    [Google Scholar]
  29. Paget T. A., Raynor M. H., Shipp D. W. E., Lloyd D. 1990; Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Mol Biochem Parasitol 42:63–68 [CrossRef]
    [Google Scholar]
  30. Paget T. A., Manning P., Jarroll E. L. 1993; Oxygen uptake in cysts and trophozoites of Giardia lamblia. J Eukaryot Microbiol 40:246–250 [CrossRef]
    [Google Scholar]
  31. Paget T. A., Macechko P. T., Jarroll E. L. 1998; Metabolic changes in Giardia intestinalis during differentiation. J Parasitol 84:222–226 [CrossRef]
    [Google Scholar]
  32. Park J. H., Schofield P. J., Edwards M. R. 1997; Giardia intestinalis: volume recovery in response to cell swelling. Exp Parasitol 86:19–28 [CrossRef]
    [Google Scholar]
  33. Perez-Reyes E., Kalyanaraman B., Mason R. P. 1980; The reductive metabolism of metronidazole and ronidazole by aerobic liver microsomes. Mol Pharmacol 17:239–244
    [Google Scholar]
  34. Portela M. P. M., Stoppani A. O. M. 1996; Redox cycling of β-lapachone and related o-naphthoquinones in the presence of dihydrolipoamide and oxygen. Biochem Pharmacol 51:275–283 [CrossRef]
    [Google Scholar]
  35. Portela M. P. M., Villamil S. H. F., Perissinotti L. J., Stoppani A. O. M. 1996; Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and hydrogen peroxide production. Biochem Pharmacol 52:1875–1882 [CrossRef]
    [Google Scholar]
  36. Rabbani G. H., Islam A. 1994; Giardiasis in humans: populations most at risk and prospects for control. In Giardia: from Molecules to Disease pp. 217–249Edited by Thompson R. C. A., Reynoldson J. A., Lymberg A. J. Cambridge: CAB International;
    [Google Scholar]
  37. Villamil S. H. F., Dubin M., Portela M. P. M., Perissinotti L. J., Erusa M. A., Stoppani A. O. M. 1997; Semiquinone production by lipophilic o-napthoquinones. Redox Rep 3:245–252
    [Google Scholar]
  38. Wallis P. M., Campbell A. T. 2002; Rethinking disinfection of Giardia cysts with ultraviolet light: old light through a new window. In Giardia, the Cosmopolitan Parasite pp. 239–248Edited by Olson B. E. Olson M. E., Wallis P. M. Wallingford: CAB International;
    [Google Scholar]
  39. Wilhelm E., Battino R., Wilcock R. J. 1977; Low pressure solubility of gases in liquid water. Chem Rev 77:219–250 [CrossRef]
    [Google Scholar]
  40. Yarlett N., Yarlett N. C., Lloyd D. 1986a; Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol Biochem Parasitol 19:111–116 [CrossRef]
    [Google Scholar]
  41. Yarlett N., Yarlett N. C., Lloyd D. 1986b; Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem Pharmacol 35:1703–1708 [CrossRef]
    [Google Scholar]
  42. Yarlett N., Rowlands C. C., Evans J. C., Yarlett N. C., Lloyd D. 1987; Nitroimidazole and oxygen derived radicals detected by electron spin resonance in hydrogenosomal and cytosolic fractions from Trichomonas vaginalis. Mol Biochem Parasitol 24:255–261 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26836-0
Loading
/content/journal/micro/10.1099/mic.0.26836-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error