Highly active zinc-finger nucleases by extended modular assembly

  1. David J. Segal1,6
  1. 1Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA;
  2. 2Department of Pharmaceutical Sciences, University of Arizona, Tucson, Arizona 85721, USA;
  3. 3Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA;
  4. 4Department of Biomedical Engineering and Institute for Genome Science and Policy, Duke University, Durham, North Carolina 27708, USA;
  5. 5Department of Microbiology, University of California, Davis, California 95616, USA

    Abstract

    Zinc-finger nucleases (ZFNs) are important tools for genome engineering. Despite intense interest by many academic groups, the lack of robust noncommercial methods has hindered their widespread use. The modular assembly (MA) of ZFNs from publicly available one-finger archives provides a rapid method to create proteins that can recognize a very broad spectrum of DNA sequences. However, three- and four-finger arrays often fail to produce active nucleases. Efforts to improve the specificity of the one-finger archives have not increased the success rate above 25%, suggesting that the MA method might be inherently inefficient due to its insensitivity to context-dependent effects. Here we present the first systematic study on the effect of array length on ZFN activity. ZFNs composed of six-finger MA arrays produced mutations at 15 of 21 (71%) targeted loci in human and mouse cells. A novel drop-out linker scheme was used to rapidly assess three- to six-finger combinations, demonstrating that shorter arrays could improve activity in some cases. Analysis of 268 array variants revealed that half of MA ZFNs of any array composition that exceed an ab initio B-score cutoff of 15 were active. These results suggest that, when used appropriately, MA ZFNs are able to target more DNA sequences with higher success rates than other current methods.

    Footnotes

    • 6 Corresponding author

      Email djsegal{at}ucdavis.edu

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.143693.112.

      Freely available online through the Genome Research Open Access option.

    • Received May 24, 2012.
    • Accepted November 28, 2012.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server