Plasma Losses by Fast Electrons in Thin Films

R. H. Ritchie
Phys. Rev. 106, 874 – Published 1 June 1957
PDFExport Citation

Abstract

The angle-energy distribution of a fast electron losing energy to the conduction electrons in a thick metallic foil has been derived assuming that the conduction electrons constitute a Fermi-Dirac gas and that the fast electron undergoes only small fractional energy and momentum changes. This distribution exhibits both collective interaction characteristics and individual interaction characteristics, and is more general than the result obtained by other workers. Describing the conduction electrons by the hydro-dynamical equations of Bloch, it has been shown that for very thin idealized foils energy loss may occur at a value which is less than the plasma energy, while as the foil thickness decreases below vωp the loss at the plasma energy becomes less than that predicted by more conventional theories. The net result is an increase in the energy loss per unit thickness as the foil thickness is decreased. It is suggested that the predicted loss at subplasma energies may correspond to some of the low-lying energy losses which have been observed by experimenters using thin foils.

  • Received 7 February 1957

DOI:https://doi.org/10.1103/PhysRev.106.874

©1957 American Physical Society

Authors & Affiliations

R. H. Ritchie

  • Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 5 — June 1957

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Journals Archive

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×