Relationship between the Hard-Sphere Fluid and Fluids with Realistic Repulsive Forces

Hans C. Andersen, John D. Weeks, and David Chandler
Phys. Rev. A 4, 1597 – Published 1 October 1971
PDFExport Citation

Abstract

We consider the equilibrium statistical mechanics of classical fluids in which the potential energy is decomposable into repulsive pair interactions. A generalized cluster expansion is derived relating the thermodynamic and structural properties of such systems to those of the hard-sphere fluid. The expansion is ordered by a softness parameter ξ which is essentially the range of intermolecular distances in which the difference between the Mayer f functions for the repulsive potential and an appropriate reference hard-sphere potential is nonzero. The first (lowest-order) approximation generated by the expansion equates the free energy and y(r) for the fluid to the respective functions appropriate to a system of hard spheres with diameter d. Here y(r)=g(r) e+βu(r), where g(r) and u(r) denote the radial distribution function and repulsive pair potential, respectively. A prescription is given for choosing a temperature- and density-dependent diameter d in the reference hard-sphere fluid so that the first approximation for the free energy contains errors of order ξ4 only, and the corrections to the first approximation for g(r) are of order ξ2. The method is used to calculate the properties of a fluid whose intermolecular potential varies as r12. The repulsive potential that produces the repulsive forces in the Lennard-Jones potential is also studied. Since the properties of the hard-sphere fluid are known from the results of computer calculations and conveniently summarized by analytic equations, the application of the first approximation is numerically very simple. With this approximation, the results obtained for both model systems agree closely with those obtained by Monte Carlo calculations.

  • Received 14 May 1971

DOI:https://doi.org/10.1103/PhysRevA.4.1597

©1971 American Physical Society

Authors & Affiliations

Hans C. Andersen

  • Department of Chemistry, Stanford University, Stanford, California 94305

John D. Weeks

  • Department of Chemistry, University of California, San Diego, La Jolla, California 92037

David Chandler

  • School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 4 — October 1971

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×