Decoherence of quantum registers

John H. Reina, Luis Quiroga, and Neil F. Johnson
Phys. Rev. A 65, 032326 – Published 1 March 2002
PDFExport Citation

Abstract

The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (“independent decoherence”) and qubits interacting collectively with the same reservoir (“collective decoherence”). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: We show that this sensitivity is a characteristic of both types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A nontrivial behavior (“recoherence”) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the system’s Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of “noiseless” quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the dynamical results obtained for the register density matrix.

  • Received 8 May 2001

DOI:https://doi.org/10.1103/PhysRevA.65.032326

©2002 American Physical Society

Authors & Affiliations

John H. Reina1,*, Luis Quiroga2,†, and Neil F. Johnson1,‡

  • 1Physics Department, Clarendon Laboratory, Oxford University, Oxford, OX1 3PU, United Kingdom
  • 2Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá, Colombia

  • *Electronic address: j.reina-estupinan@physics.ox.ac.uk
  • Electronic address: lquiroga@uniandes.edu.co
  • Electronic address: n.johnson@physics.ox.ac.uk

References (Subscription Required)

Click to Expand
Issue

Vol. 65, Iss. 3 — March 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×