Time-dependent projection-operator approach to master equations for coupled systems

C. R. Willis and R. H. Picard
Phys. Rev. A 9, 1343 – Published 1 March 1974
PDFExport Citation

Abstract

In this paper we derive master equations for two or more systems coupled to each other, perhaps strongly, by using a generalization of the usual projection-operator technique to include time-dependent projection operators. The coupled systems may be either similar or dissimilar and classical or quantum mechanical. Whereas the customary approaches to coupled systems are best able to treat situations in which some of the systems are "baths" with a specified density operator or phase-space probability density, our approach allows us to treat situations where it is necessary or convenient to treat the coupled systems on an equal footing. In our scheme the "relevant" part of the full density operator is considered to be the uncorrelated part of the full density operator and is a symmetric functional of the reduced density operators of each of the coupled subsystems. The "irrelevant" part of the density operator is then the part describing correlations between the coupled systems. Our formalism is particularly useful where systems are coupled to one another predominantly in a self-consistent fashion. First, we develop exact master equations for two coupled systems, taking as our prototype the dynamical problem of quantum optics, where a spatially extended collection of two-level atoms interact with a multimode optical field. We then generalize our results to N coupled systems, taking as our prototype the kinetics of a classical nonideal gas interacting through two-body forces, and derive exact master equations for the system. We then consider as examples several approximate theories resulting from our exact equations. In the case of the imperfect gas we investigate the low-density limit and show how Bogoliubov's form of the Boltzmann equation emerges from our formalism, as well as corrections due to Klimontovich. We consider as special cases of our exact quantum-optical equations the equations in the first Born approximation, with and without memory, and show how several existing quantum-optical master equations are contained in our general results. As a second example in quantum optics, we consider the case where the predominant behavior of the system is described by the self-consistent-field or coupled Bloch and Maxwell equations and derive a first-order perturbation description for deviations from self-consistent-field behavior.

  • Received 27 February 1973

DOI:https://doi.org/10.1103/PhysRevA.9.1343

©1974 American Physical Society

Authors & Affiliations

C. R. Willis

  • Boston University, Boston, Massachusetts 02215

R. H. Picard

  • Air Force Cambridge Research Laboratories, Bedford, Massachusetts 01730

References (Subscription Required)

Click to Expand
Issue

Vol. 9, Iss. 3 — March 1974

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×