Electronic structure of metallic alloys using charge-neutral atomic spheres

Prabhakar P. Singh and A. Gonis
Phys. Rev. B 49, 1642 – Published 15 January 1994
PDFExport Citation

Abstract

Based on the idea of charge-neutral atoimc spheres we have calculated the electronic structure of ordered and disordered Cu-Zn, Ni-Pt, and Al-Li alloys using the linear-muffin-tin-orbital (LMTO) method and the Korringa-Kohn-Rostoker coherent potential approximation (KKR CPA) method in the atomic-sphere approximation (ASA), respectively. The equilibrium lattice constants and the formation energies of ordered alloys obtained with the LMTO-ASA method show that the calculations done with charge-neutral atomic spheres are closer to the experimental results than the conventional equivolume atomic-sphere-type calculations. In the case of disordered alloys, we find that charge-neutral atomic spheres are essential for the stability of these alloys within the KKR-ASA CPA method where the Madelung-type contribution is neglected. Our results clearly indicate that for disordered alloys any future implementation of a full-potential method within the single-site CPA should be carried out with charge-neutral cells rather than the Wigner-Seitz cells.

  • Received 19 August 1993

DOI:https://doi.org/10.1103/PhysRevB.49.1642

©1994 American Physical Society

Authors & Affiliations

Prabhakar P. Singh and A. Gonis

  • Department of Chemistry and Materials Science, L-268, Lawrence Livermore National Laboratory, Livermore, California 94550

References (Subscription Required)

Click to Expand
Issue

Vol. 49, Iss. 3 — 15 January 1994

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×