Low-temperature thermoluminescence spectra of rare-earth-doped lanthanum fluoride

B. Yang, P. D. Townsend, and A. P. Rowlands
Phys. Rev. B 57, 178 – Published 1 January 1998
PDFExport Citation

Abstract

Lanthanum fluoride consistently shows two strong thermoluminescence glow peaks at low temperature in pure material near 90 and 128 K. A model is proposed in which these thermoluminescence peaks arise from the annealing of halogen defect sites, similar to the H and Vk centers of the alkali halides. Relaxation and decay of these defects in the pure LaF3 lattice results in broad-band intrinsic luminescence. Addition of rare-earth-impurity ions has two effects. First, the broad-band emission is replaced by narrow-band line emission defined by the trivalent rare-earth dopants. Second, it preferentially determines the formation of the halogen defect sites at impurity lattice sites and such sites appear to increase in thermal stability since the glow peak temperature increases from 128 K in the intrinsic material up to 141 K through the sequence of rare-earth dopants from La to Er. The temperature movement directly correlates with the changes in ionic size of the rare-earth ions, when allowance is made for differences in effective coordination number of the impurity ions. The data suggest two alternative lattice sites can be occupied. The model emphasizes that the intense thermoluminescence signals arise from internal charge rearrangements and annealing of defect complexes, rather than through the more conventional model of separated charge traps and recombination centers. At higher temperatures there is a complex array of glow peaks which depend not only on the dopant concentration but also are specific to each rare earth. Such effects imply defect models giving thermoluminescence within localized complexes and possible reasons are mentioned.

  • Received 27 June 1997

DOI:https://doi.org/10.1103/PhysRevB.57.178

©1998 American Physical Society

Authors & Affiliations

B. Yang*, P. D. Townsend, and A. P. Rowlands

  • School of Engineering, University of Sussex, Brighton, BN1 9QH, United Kingdom

  • *Permanent address: Department of Physics, Beijing Normal University, Beijing 100875, China.

References (Subscription Required)

Click to Expand
Issue

Vol. 57, Iss. 1 — 1 January 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×